Home
Class 12
MATHS
f(x)=x^x , x in (0,oo) and let g(x) be...

`f(x)=x^x , x in (0,oo)` and let ` g(x)` be inverse of f(x) , then `g(x)'` must be

A

`x(1+log x)`

B

`x(1+ log (x))`

C

`(1)/(x(1+log g(x))`

D

non-existent

Text Solution

AI Generated Solution

To find \( g'(x) \) where \( g(x) \) is the inverse of the function \( f(x) = x^x \), we will follow these steps: ### Step 1: Understand the relationship between \( f(x) \) and \( g(x) \) Since \( g(x) \) is the inverse of \( f(x) \), we have: \[ f(g(x)) = x \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|29 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|24 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.9|14 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

if f(x)=x^x,x in (1,infty) and g(x) be inverse function of f(x) then g^(')(x) must be equal to

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .

Consider a function f(x)=x^(x), AA x in [1, oo) . If g(x) is the inverse function of f(x) , then the value of g'(4) is equal to

If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x) is

Let f(x) = exp(x^3 +x^2+x) for any real number and let g(x) be the inverse function of f(x) then g'(e^3)

If f (x) = x^(2) +x ^(4) +log x and g is the inverse of f, then g'(2) is:

If f(x) = x + tan x and f is the inverse of g , then g'(x) is equal to

If f(x) = x + tan x and f is the inverse of g , then g'(x) is equal to

If f(x) = x + tan x and f is the inverse of g , then g'(x) is equal to

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) and g(x) be the inverse of f(x) . Then the value of 4 (g''(x))/(g(x)^(2)) is________.

CENGAGE ENGLISH-DIFFERENTIATION-Execrises
  1. If y=(x^x)^x then (dy)/(dx) is

    Text Solution

    |

  2. The first derivative of the function [cos^(-1)(sin sqrt((1+x)/2))+x^x]...

    Text Solution

    |

  3. f(x)=x^x , x in (0,oo) and let g(x) be inverse of f(x) , then g(x)'...

    Text Solution

    |

  4. If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b...

    Text Solution

    |

  5. If y=a x^(n+1)+b x^(-n),t h e nx^2(d^2y)/(dx^2) is equal to n(n-1)y (b...

    Text Solution

    |

  6. Suppose f(x)=e^(ax)+e^(bx)," where " a ne b, and that f''(x) -2f'(x)-1...

    Text Solution

    |

  7. (d^(20)y)/(dx^(20))(2cosxcos3x)i se q u a l to a)2^(20)(cos2x-2^(20)o...

    Text Solution

    |

  8. (d^n)/(dx^n)(logx)= ((n-1)!)/(x^n) (b) (n !)/(x^n) ((n-2)!)/(x^n) (d...

    Text Solution

    |

  9. "If "y= xlog ((x)/(a+bx))," then "x^(3)(d^(2)y)/(dx^(2))=

    Text Solution

    |

  10. If a x^2+2h x y+b y^2=1,t h e n(d^(2y))/(dx^2) is (h^2-a b)/((h x+b y)...

    Text Solution

    |

  11. "If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y(2)+xy(1) is (where ...

    Text Solution

    |

  12. If ( sin x) (cos y) = 1//2, then d^(2)y//dx^(2) at (pi//4, pi//4) is

    Text Solution

    |

  13. A function f satisfies the condition f(x)=f'(x)+f''(x)+f'''(x)+…, wher...

    Text Solution

    |

  14. Let f(x) be a polynomial of degree 3 such that f(3)=1, f'(3)=-1, f''(3...

    Text Solution

    |

  15. If y^2=a x^2+b x+c , then y^3(d^2y)/(dx^2) is (a) a constant (b) a fun...

    Text Solution

    |

  16. "If "y= sin x +e^(x)," then "(d^(2)x)/(dy^(2))=

    Text Solution

    |

  17. If f''(x) =- f(x) and g(x) = f'(x) and F(x)=(f((x)/(2)))^(2)+(g((x)/(2...

    Text Solution

    |

  18. Let y=ln (1+ cos x)^(2). The the value of (d^(2)y)/(dx^(2))+(2)/(e^(y/...

    Text Solution

    |

  19. x=tcost ,y=t+sintdot Then (d^(2x))/(dy^2)a tt=pi/2 is (pi+4)/2 (b) -(p...

    Text Solution

    |

  20. "Let "y=t^(10)+1 and x=t^(8)+1." Then "(d^(2)y)/(dx^(2)) is

    Text Solution

    |