Home
Class 11
MATHS
OABC is a tetrahedron where O is the ori...

OABC is a tetrahedron where O is the origin and A,B,C have position vectors `veca,vecb,vecc` respectively prove that circumcentre of tetrahedron OABC is `(a^2(vecbxxvecc)+b^2(veccxxveca)+c^2(vecaxxvecb))/(2[veca vecb vecc])`

Text Solution

Verified by Experts

if the centre P is with position vector `vecr`, then
`veca-vecr = vec(PA) , vecb -vecr = vec(PB) , vecc -vecr= vec(PC)`,
`where|vec(PA)| = |vec(PB)|= |vec(PC)|= |vec(OP)|= |vecr|`
consider `|veca -vecr| = |vecr|`
`or (veca -vecr) . (veca -vecr) =vecr. vecr`
`or a^(2) - 2veca. vecr + r^(2) = r^(2) or a^(2) = 2veca. vecr`
similarly, `b^(2) = 2vecb. vecr, c^(2) = 2vecc. vecr`
since `(vecb xx vecc) , (vecc xx veca) + y (vecc xx vecc) + y.0 + z.0`
` x [veca vecb vecc]`
`or (veca.vecr)/([veca vecb vecc]) = a^(2) / (2[veca vecb vecc]) `
similarly, `y = b^(2)/(2[veca vecb vecc]) and z = c^(2)/(2[veca vecb vecc])`
Hence, `vecr= (a^(2) (vecb xxvecc) + vecb^(2) (veccxxveca) +c^(2) (veca xx vecb) )/(2[vecavecbvecc])`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

Prove that (vecbxxvecc)xx(veccxxveca)=[veca vecb vecc]vecc

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

If veca,vecb, vecc and veca',vecb',vecc' are reciprocal system of vectors, then prove that veca'xxvecb'+vecb'xxvecc'+vecc'xxveca'=(veca+vecb+vecc)/([vecavecbvecc])

Prove that the points A,B,C wth positon vectros veca,vecb,vecc are collinear if and only if (vecbxxvecc)+(veccxxveca)+(vecaxxvecb)=vec0

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

Three points whose position vectors are veca,vecb,vecc will be collinear if (A) lamdaveca+muvecb=(lamda+mu)vecc (B) vecaxxvecb+vecbxxvecc+veccxxveca=0 (C) [veca vecb vecc]=0 (D) none of these

If veca,vecb,vecc are linearly independent vectors, then ((veca+2vecb)xx(2vecb+vecc).(5vecc+veca))/(veca.(vecbxxvecc)) is equal to

Express veca,vecb,vecc in terms of vecbxxvecc, veccxxveca and vecaxxvecb .

The volume of a tetrahedron determined by the vectors veca, vecb, vecc is (3)/(4) cubic units. The volume (in cubic units) of a tetrahedron determined by the vectors 3(veca xx vecb), 4(vecbxxc) and 5(vecc xx veca) will be