Home
Class 11
MATHS
Let vecp and vecq any two othogonal vect...

Let `vecp and vecq` any two othogonal vectors of equal magnitude 4 each. Let `veca ,vecb and vecc` be any three vectors of lengths `7sqrt15 and 2sqrt33`, mutually perpendicular to each other. Then find the distance of the vector `(veca.vecp)vecp+(veca.vecq)vecq+(veca.(vecpxxvecq))(vecpxxvecq)+(vecb.vecp)vecp+(vecb.vecp)vecq+ `
`(vecb.(vecb.vecq))(vecpxxvecq)+(vecc.vecp)vecp+(vecc.vecq)vecq+(vecc.(vecpxxvecq))(vecpxxvecq)` from the origin.

Text Solution

Verified by Experts

The correct Answer is:
224

`vecp,vecq and vecp xx vecq` are perpendicular to each other. We have,
`(veca.vecp) + ( veca.vecq) vecq`
`+(veca.(vecpxxvecq))(vecpxxvecq) =veca |vecp|^(2)`
`(vecb.vecp) vecp + (vecb.vecq)vecq`
`= (vecb.(vecpxxvecq))(vecpxxvecq) =vecb |vecp|^(2)`
`(vecc.vecp) + (vecc.vecq) vecq)`
`= (vecc.(vecpxxvecq))(vecpxxvecq) =vecc|vecp|^(2)`
Hence, the required distance is `|(veca +vecb +vecc)||vecp|^(2)`
`sqrt(|veca|^(2)+|vecb|^(2)+|vecc|^(2))xx |vecp|^(2)`
` 14 xx 4^(2)= 224`
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Two vectors vecP and vecQ that are perpendicular to each other if :

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

if veca,vecb and vecc are mutally perpendicular vectors of equal magnitudes, then find the angle between vectors and veca+ vecb+vecc .

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) = 2 veca.vecb xx vecc .

[vecaxxvecpvecbxxvecqveccxxvecr]+[vecaxxvecq vecbxxvecr vecc xxvecp]+[vecaxxvecr vecbxxvecp veccxxvecq]= (A) vecp+vecq+vecr (B) veca+vecb+vecc (C) 0 (D) none of these

If the vectors vecP=ahati+ahatj+3hatk' and 'vecQ=ahati-2hatj-hatk are perpendicular to each other. Find the value of a ?

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca= vecP + vecq, vecP xx vecb = vec0 and vecq. vecb =0 then prove that (vecbxx(veca xx vecb))/(vecb.vecb)=vecq

If the vectors 3vecP+vecq, 5vecP - 3vecq and 2 vecp+ vecq, 4 vecp - 2vecq are pairs of mutually perpendicular vectors, the find the angle between vectors vecp and vecq .

The vector vecP=ahati+ahatj+3hatj and vecQ=ahati-2hatj-hatk , are perpendicular to each other. The positive value of a is