Home
Class 11
MATHS
Given that vecA,vecB,vecC form triangle ...

Given that `vecA,vecB,vecC` form triangle such that `vecA=vecB+vecC`. Find a,b,c,d such that area of the triangle is `5sqrt(6)` where `vecA=aveci+bveci+cveck. vecB=dveci+3vecj+4veck and vecC=3veci+vecj-2veck`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the values of \(a\), \(b\), \(c\), and \(d\) such that the area of the triangle formed by the vectors \(\vec{A}\), \(\vec{B}\), and \(\vec{C}\) is \(5\sqrt{6}\). Given the relationships between the vectors, we can follow these steps: ### Step 1: Write down the relationships between the vectors We know that: \[ \vec{A} = \vec{B} + \vec{C} \] Given: \[ \vec{A} = a\vec{i} + b\vec{j} + c\vec{k} \] \[ \vec{B} = d\vec{i} + 3\vec{j} + 4\vec{k} \] \[ \vec{C} = 3\vec{i} + \vec{j} - 2\vec{k} \] ### Step 2: Substitute \(\vec{B}\) and \(\vec{C}\) into the equation for \(\vec{A}\) Substituting the expressions for \(\vec{B}\) and \(\vec{C}\) into the equation for \(\vec{A}\): \[ a\vec{i} + b\vec{j} + c\vec{k} = (d + 3)\vec{i} + (3 + 1)\vec{j} + (4 - 2)\vec{k} \] This simplifies to: \[ a = d + 3, \quad b = 4, \quad c = 2 \] ### Step 3: Calculate the area of the triangle using the cross product The area \(A\) of the triangle formed by vectors \(\vec{B}\) and \(\vec{C}\) is given by: \[ A = \frac{1}{2} |\vec{B} \times \vec{C}| \] We need to find \(|\vec{B} \times \vec{C}|\) and set it equal to \(10\sqrt{6}\) (since \(5\sqrt{6} = \frac{1}{2} |\vec{B} \times \vec{C}|\)). ### Step 4: Compute the cross product \(\vec{B} \times \vec{C}\) Using the determinant formula for the cross product: \[ \vec{B} \times \vec{C} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ d & 3 & 4 \\ 3 & 1 & -2 \end{vmatrix} \] Calculating this determinant: \[ \vec{B} \times \vec{C} = \vec{i}(3 \cdot (-2) - 4 \cdot 1) - \vec{j}(d \cdot (-2) - 4 \cdot 3) + \vec{k}(d \cdot 1 - 3 \cdot 3) \] This simplifies to: \[ \vec{B} \times \vec{C} = \vec{i}(-6 - 4) - \vec{j}(-2d - 12) + \vec{k}(d - 9) \] \[ = -10\vec{i} + (2d + 12)\vec{j} + (d - 9)\vec{k} \] ### Step 5: Find the magnitude of the cross product The magnitude is given by: \[ |\vec{B} \times \vec{C}| = \sqrt{(-10)^2 + (2d + 12)^2 + (d - 9)^2} \] Setting this equal to \(10\sqrt{6}\): \[ \sqrt{100 + (2d + 12)^2 + (d - 9)^2} = 10\sqrt{6} \] Squaring both sides: \[ 100 + (2d + 12)^2 + (d - 9)^2 = 600 \] ### Step 6: Expand and simplify the equation Expanding: \[ (2d + 12)^2 = 4d^2 + 48d + 144 \] \[ (d - 9)^2 = d^2 - 18d + 81 \] Combining these: \[ 100 + 4d^2 + 48d + 144 + d^2 - 18d + 81 = 600 \] This simplifies to: \[ 5d^2 + 30d + 325 = 600 \] \[ 5d^2 + 30d - 275 = 0 \] Dividing through by 5: \[ d^2 + 6d - 55 = 0 \] ### Step 7: Solve the quadratic equation Using the quadratic formula: \[ d = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 1 \cdot (-55)}}{2 \cdot 1} \] \[ = \frac{-6 \pm \sqrt{36 + 220}}{2} = \frac{-6 \pm \sqrt{256}}{2} = \frac{-6 \pm 16}{2} \] Calculating the two possible values: \[ d = \frac{10}{2} = 5 \quad \text{or} \quad d = \frac{-22}{2} = -11 \] ### Step 8: Find corresponding values of \(a\), \(b\), and \(c\) Using \(d = 5\): \[ a = 5 + 3 = 8, \quad b = 4, \quad c = 2 \] Using \(d = -11\): \[ a = -11 + 3 = -8, \quad b = 4, \quad c = 2 \] ### Final Answer Thus, the values are: 1. For \(d = 5\): \(a = 8\), \(b = 4\), \(c = 2\) 2. For \(d = -11\): \(a = -8\), \(b = 4\), \(c = 2\)

To solve the problem step by step, we need to find the values of \(a\), \(b\), \(c\), and \(d\) such that the area of the triangle formed by the vectors \(\vec{A}\), \(\vec{B}\), and \(\vec{C}\) is \(5\sqrt{6}\). Given the relationships between the vectors, we can follow these steps: ### Step 1: Write down the relationships between the vectors We know that: \[ \vec{A} = \vec{B} + \vec{C} \] Given: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vecA=2veci+3vecj+4veck and vecB=4veci+3vecj+2veck, find vecAxxvecB .

If vecA=2veci-3vecj+7veck, vecB=veci+2veck and vecC=vecj-veck find vecA.(vecBxxvecC) .

If vecA=2veci+vecj-3veck vecB=veci-2vecj+veck and vecC=-veci+vecj-vec4k find vecAxx(vecBxxvecC)

Let veca=2veci+3vecj+4veck and vecb=3veci+4vecj+5veck . Find the angle between them.

If veca, vecb, vecc are unit vectors such that veca. vecb =0 = veca.vecc and the angle between vecb and vecc is pi/3 , then find the value of |veca xx vecb -veca xx vecc|

If veca=2veci+3vecj+4veck and vecb =4veci+3vecj+2veck , find the angle between veca and vecb .

If veca , vecb , vecc are unit vectors such that veca+ vecb+ vecc= vec0 find the value of (veca* vecb+ vecb* vecc+ vecc*veca) .

If veca, vecb,vecc are unit vectors such that veca is perpendicular to the plane of vecb, vecc and the angle between vecb,vecc is pi/3 , then |veca+vecb+vecc|=

Three vectors veca,vecb,vecc are such that veca xx vecb=4(veca xx vecc) and |veca|=|vecb|=1 and |vecc|=1/4 . If the angle between vecb and vecc is pi/3 then vecb is

Examine whether the vectors veca=2veci+3vecj+2veck, vecb=veci-vecj+2veck and vecc=3veci+2vecj-4veck form a left handed or a righat handed system.