Home
Class 11
MATHS
If vec e1, vec e2, vec e3a n d vec E1, ...

If ` vec e_1, vec e_2, vec e_3a n d vec E_1, vec E_2, vec E_3` are two sets of vectors such that ` vec e_idot vec E_j=1,ifi=ja n d vec e_idot vec E_j=0a n difi!=j ,` then prove that `[ vec e_1 vec e_2 vec e_3][ vec E_1 vec E_2 vec E_3]=1.`

Text Solution

AI Generated Solution

To prove that \([ \vec{e_1}, \vec{e_2}, \vec{e_3} ] [ \vec{E_1}, \vec{E_2}, \vec{E_3} ] = 1\), we start by analyzing the given conditions. ### Step 1: Understand the inner product conditions We are given that: - \(\vec{e_i} \cdot \vec{E_j} = 1\) if \(i = j\) - \(\vec{e_i} \cdot \vec{E_j} = 0\) if \(i \neq j\) This indicates that the vectors \(\vec{e_1}, \vec{e_2}, \vec{e_3}\) and \(\vec{E_1}, \vec{E_2}, \vec{E_3}\) are orthonormal. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vec e_1, vec e_2, vec e_3a n d vec E_1, vec E_2, vec E_3 are two sets of vectors such that vec e_idot vec E_j=1,ifi=j and vec e_idot vec E_j=0a n difi!=j , then prove that [ (vec e_1, vec e_2 ,vec e_3)][ (vec E_1, vec E_2, vec E_3) ]=1.

A B C D E is pentagon, prove that vec A B + vec B C + vec C D + vec D E+ vec E A = vec0

If | vec a|=13 ,\ | vec b|=5\ a n d\ vec adot vec b=60 , t h e n find | vec axx vec b|dot

Let vec a , vec b , vec c , be three non-zero vectors. If vec a .(vec bxx vec c)=0 and vec b and vec c are not parallel, then prove that vec a=lambda vec b+mu vec c ,w h e r elambda are some scalars dot

A B C D E is pentagon, prove that vec A B+ vec A E+ vec B C+ vec D C+ vec E D+ vec A C=3 vec A C

If vec axx vec b= vec bxx vec c!=0,w h e r e vec a , vec b ,a n d vec c are coplanar vectors, then for some scalar k prove that vec a+ vec c=k vec bdot

If ( vec axx vec b)xx( vec bxx vec c)= vec b ,w h e r e vec a , vec b ,a n d vec c are nonzero vectors, then 1. vec a , vec b ,a n d vec c can be coplanar 2. vec a , vec b ,a n d vec c must be coplanar 3. vec a , vec b ,a n d vec c cannot be coplanar 4.none of these

Show that the projection vector vec aa n d vec b(!= vec0)(com pon e n tof vec aaong vec b)i s(( vec adot vec b)/(| vec b|^2)) vec bdot

prove that | vec axx vec b|=( vec adot vec b)t a ntheta,\ w h e r e\ theta is the angle between vec a\ a n d\ vec bdot

A vector vec d is equally inclined to three vectors vec a= hat i+ hat j+ hat k , vec b=2 hat i+ hat ja n d vec c=3 hat j-2 hat kdot Let vec x , vec y ,a n d vec z be three vectors in the plane of vec a , vec b ; vec b , vec c ; vec c , vec a , respectively. Then a. vec x. vec d=-1 b. vec y. vec d=1 c. vec z. vec d=0 d. vec r. vec d=0,w h e r e vec r=lambda vec x+mu vec y+delta vec z