Home
Class 11
MATHS
If A( vec a),B( vec b)a n dC( vec c) are...

If `A( vec a),B( vec b)a n dC( vec c)` are three non-collinear points and origin does not lie in the plane of the points `A ,Ba n dC ,` then point `P( vec p)` in the plane of the ` A B C` such that vector ` vec O P` is `_|_` to planeof ` A B C` , show that ` vec O P=([ vec a vec b vec c]( vec axx vec b+ vec bxx vec c+ vec cxx vec a))/(4^2),w h e r e` is the area of the ` A B Cdot`

Text Solution

AI Generated Solution

To solve the problem step by step, we need to show that the vector \( \vec{OP} \) can be expressed as: \[ \vec{OP} = \frac{[\vec{a}, \vec{b}, \vec{c}](\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a})}{4^2} \] where \( [\vec{a}, \vec{b}, \vec{c}] \) represents the area of triangle \( ABC \). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercises MCQ|134 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Reasoning type|8 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

Given that vec adot vec b= vec adot vec c , vec axx vec b= vec axx vec c and vec a is not a zero vector. Show that vec b= vec c dot

If veca , vec b , vec c are three vectors such that veca+ vec b+ vec c= vec0 , then prove that vec axx vec b= vec bxx vec c= vec cxx vec a

Show that vectors vec a ,\ vec b ,\ vec c are coplanar if vec a+ vec b ,\ vec b+ vec c ,\ vec c+ vec a are coplanar.

Show that the vectors vec a , vec b and vec c are coplanar if vec a+ vec b , vec b+ vec c and vec c+ vec a are coplanar.

If vec axx vec b= vec axx vec c , vec a!= vec0a n d vec b!= vec c , show that vec b= vec c+t vec a for some scalar tdot

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

Let vec a , vec b ,and vec c be any three vectors, then prove that [ vec axx vec b vec bxx vec c vec cxx vec a ]= [vec a vec b vec c]^2

If vec axx vec b= vec cxx vec da n d vec axx vec c= vec bxx vec d , then show that vec a- vec d , is paralelto vec b- vec c

For any three vectors veca , vec b , vec c show that vecaxx( vec b+ vec c)+ vec bxx( vec c+ vec a)+ vec cxx( vec a+ vec b)= vec0