Home
Class 11
MATHS
The unit vector perendicular to the plan...

The unit vector perendicular to the plane determined by `P(1,−1,2),Q(2,0,−1) and R(0,2,1)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector perpendicular to the plane determined by the points \( P(1, -1, 2) \), \( Q(2, 0, -1) \), and \( R(0, 2, 1) \), we will follow these steps: ### Step 1: Find the vectors \( \vec{PQ} \) and \( \vec{PR} \) 1. **Calculate \( \vec{PQ} \)**: \[ \vec{PQ} = Q - P = (2 - 1, 0 - (-1), -1 - 2) = (1, 1, -3) \] So, \( \vec{PQ} = \hat{i} + \hat{j} - 3\hat{k} \). 2. **Calculate \( \vec{PR} \)**: \[ \vec{PR} = R - P = (0 - 1, 2 - (-1), 1 - 2) = (-1, 3, -1) \] So, \( \vec{PR} = -\hat{i} + 3\hat{j} - \hat{k} \). ### Step 2: Find the cross product \( \vec{PQ} \times \vec{PR} \) To find the vector perpendicular to the plane formed by \( P, Q, R \), we need to compute the cross product \( \vec{PQ} \times \vec{PR} \). \[ \vec{PQ} \times \vec{PR} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & -3 \\ -1 & 3 & -1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i} \begin{vmatrix} 1 & -3 \\ 3 & -1 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & -3 \\ -1 & -1 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ -1 & 3 \end{vmatrix} \] Calculating each determinant: 1. \( \begin{vmatrix} 1 & -3 \\ 3 & -1 \end{vmatrix} = (1)(-1) - (-3)(3) = -1 + 9 = 8 \) 2. \( \begin{vmatrix} 1 & -3 \\ -1 & -1 \end{vmatrix} = (1)(-1) - (-3)(-1) = -1 - 3 = -4 \) 3. \( \begin{vmatrix} 1 & 1 \\ -1 & 3 \end{vmatrix} = (1)(3) - (1)(-1) = 3 + 1 = 4 \) Putting it all together: \[ \vec{PQ} \times \vec{PR} = 8\hat{i} + 4\hat{j} + 4\hat{k} \] ### Step 3: Find the magnitude of the cross product Now, we need to find the magnitude of the vector \( \vec{PQ} \times \vec{PR} \): \[ |\vec{PQ} \times \vec{PR}| = \sqrt{8^2 + 4^2 + 4^2} = \sqrt{64 + 16 + 16} = \sqrt{96} = 4\sqrt{6} \] ### Step 4: Find the unit vector The unit vector perpendicular to the plane is given by: \[ \hat{n} = \frac{\vec{PQ} \times \vec{PR}}{|\vec{PQ} \times \vec{PR}|} \] Substituting the values: \[ \hat{n} = \frac{8\hat{i} + 4\hat{j} + 4\hat{k}}{4\sqrt{6}} = \frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}} \] ### Final Answer The unit vector perpendicular to the plane determined by the points \( P, Q, R \) is: \[ \hat{n} = \frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}} \]

To find the unit vector perpendicular to the plane determined by the points \( P(1, -1, 2) \), \( Q(2, 0, -1) \), and \( R(0, 2, 1) \), we will follow these steps: ### Step 1: Find the vectors \( \vec{PQ} \) and \( \vec{PR} \) 1. **Calculate \( \vec{PQ} \)**: \[ \vec{PQ} = Q - P = (2 - 1, 0 - (-1), -1 - 2) = (1, 1, -3) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Find a unit vector perpendicular to the plane determined by the points (1,-1,2),(2,0,-1) and (0,2,1)dot

Find a unit vector perpendicular to the plane determined by the points (1,-1,2),(2,0,-1)a n d(0,2,1)dot

Find a unit vector perpendicular to the plane determined by the points (1,-1,2),(2,0,-1)a n d(0,2,1)dot

The unit vector perendicular to the plane determined by P (1,-1,2) ,C(3,-1,2) is ________.

Find the vector perpendicular to the plane determined by the points ( 1 , -2 , 2 ) . , ( 2 , 0 , − 1 ) and ( 0 , 2 , 1 ) .

Find a unit vector normal to the plane through the points (1, 1, 1), (-1, 2, 3) and (2, -1, 3) .

Let P_(1):x-2y+3z=5 and P_(2):2x-3y+z+4=0 be two planes. The equation of the plane perpendicular to the line of intersection of P_(1)=0 and P_(2)=0 and passing through (1,1,1) is

The position vectors of the points A,B,C are respectively (1,1,1),(1,-1,2),(0,2,-1). Find a unit vector parallel totehplane determined by A,B,C and perpendicular to the vector (1,0,1).

Find the vector equation of the plane passing through the points (1,1,0),(1,2,1)a n d(-2,2,-1)dot

Find a unit vector in the direction from point P(1,-1,2) to point Q(-1,1,1) .