Home
Class 11
MATHS
If vecA, vecB, vecC are non-coplanar vec...

If `vecA, vecB, vecC` are non-coplanar vectors then `(vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecAxxvecB)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{\vec{A} \cdot (\vec{B} \times \vec{C})}{\vec{C} \times \vec{A} \cdot \vec{B}} + \frac{\vec{B} \cdot (\vec{A} \times \vec{C})}{\vec{C} \cdot (\vec{A} \times \vec{B})} \] ### Step 1: Recognize the Scalar Triple Product The scalar triple product of vectors \(\vec{A}, \vec{B}, \vec{C}\) is defined as: \[ \vec{A} \cdot (\vec{B} \times \vec{C}) = \text{Volume of the parallelepiped formed by } \vec{A}, \vec{B}, \vec{C} \] Thus, we can express the terms in the numerator as scalar triple products: \[ \vec{A} \cdot (\vec{B} \times \vec{C}) = [\vec{A}, \vec{B}, \vec{C}] \] \[ \vec{B} \cdot (\vec{A} \times \vec{C}) = [\vec{B}, \vec{A}, \vec{C}] \] ### Step 2: Rewrite the Expression Now, rewrite the original expression using the scalar triple product notation: \[ \frac{[\vec{A}, \vec{B}, \vec{C}]}{\vec{C} \times \vec{A} \cdot \vec{B}} + \frac{[\vec{B}, \vec{A}, \vec{C}]}{\vec{C} \cdot (\vec{A} \times \vec{B})} \] ### Step 3: Use Properties of Scalar Triple Products Using the property of scalar triple products, we know: \[ [\vec{B}, \vec{A}, \vec{C}] = -[\vec{A}, \vec{B}, \vec{C}] \] Thus, we can rewrite the second term: \[ \frac{[\vec{B}, \vec{A}, \vec{C}]}{\vec{C} \cdot (\vec{A} \times \vec{B})} = -\frac{[\vec{A}, \vec{B}, \vec{C}]}{\vec{C} \cdot (\vec{A} \times \vec{B})} \] ### Step 4: Combine the Terms Now, we can combine the two terms: \[ \frac{[\vec{A}, \vec{B}, \vec{C}]}{\vec{C} \times \vec{A} \cdot \vec{B}} - \frac{[\vec{A}, \vec{B}, \vec{C}]}{\vec{C} \cdot (\vec{A} \times \vec{B})} \] ### Step 5: Factor Out the Common Scalar Triple Product Factoring out the common scalar triple product: \[ [\vec{A}, \vec{B}, \vec{C}] \left( \frac{1}{\vec{C} \times \vec{A} \cdot \vec{B}} - \frac{1}{\vec{C} \cdot (\vec{A} \times \vec{B})} \right) \] ### Step 6: Simplify the Expression Since \(\vec{C} \times \vec{A} \cdot \vec{B}\) and \(\vec{C} \cdot (\vec{A} \times \vec{B})\) are both non-zero for non-coplanar vectors, we can conclude: \[ \frac{[\vec{A}, \vec{B}, \vec{C}]}{\vec{C} \cdot (\vec{A} \times \vec{B})} \left( \frac{\vec{C} \cdot (\vec{A} \times \vec{B}) - \vec{C} \times \vec{A} \cdot \vec{B}}{\vec{C} \times \vec{A} \cdot \vec{B} \cdot \vec{C} \cdot (\vec{A} \times \vec{B})} \right) = 0 \] ### Final Answer Thus, the final answer is: \[ 0 \]

To solve the problem, we need to evaluate the expression: \[ \frac{\vec{A} \cdot (\vec{B} \times \vec{C})}{\vec{C} \times \vec{A} \cdot \vec{B}} + \frac{\vec{B} \cdot (\vec{A} \times \vec{C})}{\vec{C} \cdot (\vec{A} \times \vec{B})} \] ### Step 1: Recognize the Scalar Triple Product The scalar triple product of vectors \(\vec{A}, \vec{B}, \vec{C}\) is defined as: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vecA,vecB,vecC are non-coplanar vectors than ( vecA . vecB xx vecC )/(vecCxxvecA.vecB)+(vecB. vecA xx vecC)/( vecC. vecA xx vecB) is equal to

Assertion : If vecA, vecB,vecC are any three non coplanar vectors then (vecA.(vecBxxvecC))/((vecCxxvecA).vecB)+(vecB.(vecAxxvecc))/(vecC.(vecAxxvecB))=0 , Reason: [veca vecb vecc]!=[vecb vecc veca] (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If veca, vecb, vecc are non-coplanar vectors, then (veca.(vecb xx vecc))/(vecb.(vecc xx veca)) + (vecb.(vecc xx veca))/(vecc.(veca xx vecb)) +(vecc.(vecb xx veca))/(veca. (vecb xx vecc)) is equal to:

If veca, vecb, vecc are non-coplanar non-zero vectors, then (vecaxxvecb)xx(vecaxxvecc)+(vecbxxvecc)xx(vecbxxveca)+(veccxxveca)xx(veccxxvecb) is equal to

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca, vecb, vecc are three non coplanar, non zero vectors then (veca.veca)(vecbxxvecc)+(veca.vecb)(veccxxveca)+(veca.vecc)(vecaxxvecb) is equal to

If veca,vecb,vecc be non coplanar vectors and vecp=(vecbxxvecc)/([veca vecb vecc]) , vecq=(veccxxveca)/([veca vecb vecc]) , vecr=(vecaxxvecb)/([veca vecb vecc]) then (A) vecp.veca=1 (B) vecp.veca+vecq.vecb+vecr.vecc=3 (C) vecp.veca+vecq.vecb+vecr.vecc=0 (D) none of these

If veca, vecba and vecc are non- coplanar vecotrs, then prove that |(veca.vecd)(vecbxxvecc)+(vecb.vecd)(veccxxveca)+(vecc.vecd)(vecaxxvecb) is independent of vecd where vecd is a unit vector.

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

Let veca,vecb,vecc be non coplanar vectors and vecp= (vecbxxvecc)/([veca vecb vecc]), vecq= (veccxxveca)/([veca vecb vecc]), vecr= (vecaxxvecb)/([veca vecb vecc]) . What is the vaue of (veca-vecb-vecc).vecp+(vecb-vecc-veca).vecq+(vecc-veca-vecb).vecr? (A) 0 (B) -3 (C) 3 (D) -9