Home
Class 11
MATHS
If vecA=(1,1,1) and vecC=(0,1,-1) are gi...

If `vecA=(1,1,1) and vecC=(0,1,-1)` are given vectors then find a vector `vecB` satisfying equations `vecAxxvecB=vecC and vecA.vecB=3`

Text Solution

AI Generated Solution

The correct Answer is:
To find the vector \(\vec{B}\) that satisfies the equations \(\vec{A} \times \vec{B} = \vec{C}\) and \(\vec{A} \cdot \vec{B} = 3\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{A} = (1, 1, 1) \quad \text{and} \quad \vec{C} = (0, 1, -1) \] Let the vector \(\vec{B} = (x, y, z)\). ### Step 2: Use the dot product equation From the equation \(\vec{A} \cdot \vec{B} = 3\): \[ \vec{A} \cdot \vec{B} = 1 \cdot x + 1 \cdot y + 1 \cdot z = x + y + z = 3 \] This gives us our first equation: \[ (1) \quad x + y + z = 3 \] ### Step 3: Use the cross product equation Now, we will compute the cross product \(\vec{A} \times \vec{B}\): \[ \vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ x & y & z \end{vmatrix} \] Calculating the determinant: \[ \vec{A} \times \vec{B} = \hat{i}(1 \cdot z - 1 \cdot y) - \hat{j}(1 \cdot z - 1 \cdot x) + \hat{k}(1 \cdot y - 1 \cdot x) \] This simplifies to: \[ \vec{A} \times \vec{B} = (z - y) \hat{i} + (x - z) \hat{j} + (y - x) \hat{k} \] Setting this equal to \(\vec{C} = (0, 1, -1)\), we have: \[ (2) \quad z - y = 0 \\ (3) \quad x - z = 1 \\ (4) \quad y - x = -1 \] ### Step 4: Solve the system of equations From equation (2): \[ z = y \] Substituting \(z = y\) into equation (3): \[ x - y = 1 \quad \Rightarrow \quad x = y + 1 \] Substituting \(x = y + 1\) into equation (4): \[ y - (y + 1) = -1 \quad \Rightarrow \quad -1 = -1 \quad \text{(which is always true)} \] Now substitute \(x = y + 1\) and \(z = y\) into equation (1): \[ (y + 1) + y + y = 3 \\ 3y + 1 = 3 \\ 3y = 2 \\ y = \frac{2}{3} \] Now, substituting back to find \(x\) and \(z\): \[ z = y = \frac{2}{3} \\ x = y + 1 = \frac{2}{3} + 1 = \frac{5}{3} \] ### Step 5: Write the final vector \(\vec{B}\) Thus, the vector \(\vec{B}\) is: \[ \vec{B} = \left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right) \] ### Summary The vector \(\vec{B}\) that satisfies the given conditions is: \[ \vec{B} = \left(\frac{5}{3}, \frac{2}{3}, \frac{2}{3}\right) \]

To find the vector \(\vec{B}\) that satisfies the equations \(\vec{A} \times \vec{B} = \vec{C}\) and \(\vec{A} \cdot \vec{B} = 3\), we will follow these steps: ### Step 1: Define the vectors Given: \[ \vec{A} = (1, 1, 1) \quad \text{and} \quad \vec{C} = (0, 1, -1) \] Let the vector \(\vec{B} = (x, y, z)\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If veca=(0,1,-1,) and vecc=(1,1,1) are given vectors then find a vector vecb satisfying vecaxxvecb=vecc and veca.vecb=3

If veca, vecb, vecc are three non-coplanar vectors, then a vector vecr satisfying vecr.veca=vecr.vecb=vecr.vecc=1 , is

The vectors veca and vecb are not perpendicular and vecc and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb)vecb (B) vecb+(vecb.vecc)/(veca.vecb)vecc (C) vecc-(veca.vecc)/(veca.vecb)vecb (D) vecb-(vecb.vecc)/(veca.vecb)vecc

The vectors veca and vecb are not perpendicular and vecac and vecd are two vectors satisfying : vecbxxvecc=vecbxxvecd and veca.vecd=0. Then the vecd is equal to (A) vecc+(veca.vecc)/(veca.vecb))vecb (B) vecb+(vecb.vecc)/(veca.vecb))vecc (C) vecc-(veca.vecc)/(veca.vecb))vecb (D) vecb-(vecb.vecc)/(veca.vecb))vecc

If veca,vecb,vecc,vecd are four distinct vectors satisfying the conditions vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxd then prove that veca.vecb+vecc.vecd!=veca.vecc+vecb.vecd

Three vectors vecA, vecB and vecC satisfy the relation vecA. vecB=0 and vecA. vecC=0. The vector vecA is parallel to

vecA, vecB and vecC are vectors each having a unit magneitude. If vecA + vecB+vecC=0 , then vecA. vecB+vecB.vecC+ vecC.vecA will be:

If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(veccxxvecd)=1 and veca.vecc=1/2, then

If veca,vecb and vecc are non coplaner vectors such that vecbxxvecc=veca , veccxxveca=vecb and vecaxxvecb=vecc then |veca+vecb+vecc| =

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then: