Home
Class 11
MATHS
A unit vector coplanar with veci + vecj ...

A unit vector coplanar with `veci + vecj + 2veck and veci + 2 vecj + veck` and perpendicular to `veci + vecj + veck ` is _______

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector that is coplanar with the vectors \( \vec{i} + \vec{j} + 2\vec{k} \) and \( \vec{i} + 2\vec{j} + \vec{k} \), and also perpendicular to the vector \( \vec{i} + \vec{j} + \vec{k} \), we can follow these steps: ### Step 1: Define the vectors Let: - \( \vec{a} = \vec{i} + \vec{j} + 2\vec{k} \) - \( \vec{b} = \vec{i} + 2\vec{j} + \vec{k} \) - \( \vec{c} = \vec{i} + \vec{j} + \vec{k} \) ### Step 2: Find a vector coplanar with \( \vec{a} \) and \( \vec{b} \) Vectors \( \vec{a} \) and \( \vec{b} \) are coplanar if their scalar triple product is zero: \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \] ### Step 3: Calculate \( \vec{b} \times \vec{c} \) First, we need to compute the cross product \( \vec{b} \times \vec{c} \): \[ \vec{b} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \quad \vec{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \] Using the determinant to find the cross product: \[ \vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}(2 \cdot 1 - 1 \cdot 1) - \hat{j}(1 \cdot 1 - 1 \cdot 1) + \hat{k}(1 \cdot 1 - 2 \cdot 1) \] \[ = \hat{i}(2 - 1) - \hat{j}(0) + \hat{k}(1 - 2) \] \[ = \hat{i} - \hat{k} \] Thus, \( \vec{b} \times \vec{c} = \hat{i} - \hat{k} \). ### Step 4: Find the dot product with \( \vec{a} \) Now we need to find \( \vec{a} \cdot (\vec{b} \times \vec{c}) \): \[ \vec{a} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \] Calculating the dot product: \[ \vec{a} \cdot (\hat{i} - \hat{k}) = 1 \cdot 1 + 1 \cdot 0 + 2 \cdot (-1) = 1 + 0 - 2 = -1 \] Since this is not zero, we need to find a vector \( \vec{d} \) that is perpendicular to \( \vec{c} \) and satisfies the coplanarity condition. ### Step 5: Set up the equations Let \( \vec{d} = x \hat{i} + y \hat{j} + z \hat{k} \). We have two conditions: 1. \( \vec{d} \cdot (\hat{i} + 2\hat{j} + \hat{k}) = 0 \) 2. \( \vec{d} \cdot (\hat{i} + \hat{j} + \hat{k}) = 0 \) From the first condition: \[ x + 2y + z = 0 \quad \text{(Equation 1)} \] From the second condition: \[ x + y + z = 0 \quad \text{(Equation 2)} \] ### Step 6: Solve the equations Subtract Equation 2 from Equation 1: \[ (x + 2y + z) - (x + y + z) = 0 \implies y = 0 \] Substituting \( y = 0 \) in Equation 2: \[ x + 0 + z = 0 \implies z = -x \] Thus, \( \vec{d} = x \hat{i} + 0 \hat{j} - x \hat{k} = x(\hat{i} - \hat{k}) \). ### Step 7: Find the unit vector To make \( \vec{d} \) a unit vector: \[ \sqrt{x^2 + 0^2 + (-x)^2} = 1 \implies \sqrt{2x^2} = 1 \implies x = \pm \frac{1}{\sqrt{2}} \] Thus, the unit vector is: \[ \vec{d} = \pm \frac{1}{\sqrt{2}}(\hat{i} - \hat{k}) \] ### Final Answer The required unit vector is: \[ \frac{1}{\sqrt{2}}(\hat{i} - \hat{k}) \text{ or } -\frac{1}{\sqrt{2}}(\hat{i} - \hat{k}) \]

To find a unit vector that is coplanar with the vectors \( \vec{i} + \vec{j} + 2\vec{k} \) and \( \vec{i} + 2\vec{j} + \vec{k} \), and also perpendicular to the vector \( \vec{i} + \vec{j} + \vec{k} \), we can follow these steps: ### Step 1: Define the vectors Let: - \( \vec{a} = \vec{i} + \vec{j} + 2\vec{k} \) - \( \vec{b} = \vec{i} + 2\vec{j} + \vec{k} \) - \( \vec{c} = \vec{i} + \vec{j} + \vec{k} \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let vecx, vecy and vecz be three vectors each of magnitude sqrt2 and the angle between each pair of them is pi/3 if veca is a non-zero vector perpendicular to vecx and vecy xx vecz and vecb is a non-zero vector perpendicular to vecy and vecz xx vecx , then

Vectors vec(3i)-vec(2i)+veck and vec(2i)+vec(6j)+vec(mk) will be perpendicular to each other if

Find the equation of the plane through the point 2veci+3vecj-veck and perpendicular to the vector 3veci-4vecj+7veck .

Write the unit vector in the direction of vecA=5veci+vecj-2veck .

Statement 1 : veca = 3 veci + p vecj +3veck and vecb = 2veci + 3vecj + qveck are parallel vectors if p = 9//2 and q =2 . Statement 2 : If veca= a_1 veci + a_2 vecj + a_3 veck and vecb = b_1 veci + b_2 vecj + b_3veck are parallel, then (a_1)/(b_1) = (a_2)/(b_2)= (a_3)/(b_3) .

If vecA=2veci+3vecj+4veck and vecB=4veci+3vecj+2veck, find vecAxxvecB .

A particle acted on by constant forces 4veci+vecj-3veck and 3veci+vecj-veck is displaced from the point veci+2vecj+3veck to the point 5veci+4vecj+veck. Find the total work done by the forces

Find the equation of the plane through the 2veci+3vecj-veck and perpendicular to the vector 3veci+2vecj-2veck . Determine the perpendicular distance of this plane from the origin.

Position vectors of two points A and C re 9veci-vecj+7veci-2vecj+7veck respectively THE point intersection of vectors vec(AB)=4veci-vecj+3veck and vec(CD)=2veci-vecj+2veck is P. If vector vec(PQ) is perpendicular to vec(AB) and vec(CD) and PQ=15 units find the position vector of Q.

A force of 15 units act iln the direction of the vector veci-vecj+2veck and passes through a point 2veci-2vecj+2veck . Find the moment of the force about the point veci+vecj+veck .