Home
Class 11
MATHS
If vecb and vecc are any two mutually pe...

If `vecb and vecc` are any two mutually perpendicular unit vectors and `veca` is any vector, then `(veca.vecb)vecb+(veca.vecc)vecc+(veca.(vecbxxvecc))/(|vecbxxvecc|^2)(vecbxxvecc)=` (A) 0 (B) `veca (C) `veca /2` (D) `2veca`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ (\vec{a} \cdot \vec{b}) \vec{b} + (\vec{a} \cdot \vec{c}) \vec{c} + \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|^2} (\vec{b} \times \vec{c}) \] where \(\vec{b}\) and \(\vec{c}\) are mutually perpendicular unit vectors, and \(\vec{a}\) is any vector. ### Step 1: Define the vectors Assume: - \(\vec{b} = \hat{j}\) (unit vector in the y-direction) - \(\vec{c} = \hat{k}\) (unit vector in the z-direction) ### Step 2: Calculate the cross product \(\vec{b} \times \vec{c}\) Using the right-hand rule for cross products: \[ \vec{b} \times \vec{c} = \hat{j} \times \hat{k} = \hat{i} \] Thus, \(\vec{b} \times \vec{c} = \hat{i}\). ### Step 3: Calculate the magnitude of \(\vec{b} \times \vec{c}\) \[ |\vec{b} \times \vec{c}| = |\hat{i}| = 1 \] Therefore, \(|\vec{b} \times \vec{c}|^2 = 1^2 = 1\). ### Step 4: Express vector \(\vec{a}\) Let \(\vec{a} = x \hat{i} + y \hat{j} + z \hat{k}\). ### Step 5: Calculate \(\vec{a} \cdot \vec{b}\) \[ \vec{a} \cdot \vec{b} = (x \hat{i} + y \hat{j} + z \hat{k}) \cdot \hat{j} = y \] ### Step 6: Calculate \(\vec{a} \cdot \vec{c}\) \[ \vec{a} \cdot \vec{c} = (x \hat{i} + y \hat{j} + z \hat{k}) \cdot \hat{k} = z \] ### Step 7: Calculate \(\vec{a} \cdot (\vec{b} \times \vec{c})\) \[ \vec{a} \cdot (\vec{b} \times \vec{c}) = (x \hat{i} + y \hat{j} + z \hat{k}) \cdot \hat{i} = x \] ### Step 8: Substitute values into the expression Now substituting the values we calculated: \[ (\vec{a} \cdot \vec{b}) \vec{b} = y \hat{j} \] \[ (\vec{a} \cdot \vec{c}) \vec{c} = z \hat{k} \] \[ \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|^2} (\vec{b} \times \vec{c}) = \frac{x}{1} \hat{i} = x \hat{i} \] ### Step 9: Combine all parts Now we combine all parts: \[ y \hat{j} + z \hat{k} + x \hat{i} = x \hat{i} + y \hat{j} + z \hat{k} = \vec{a} \] ### Conclusion Thus, the expression simplifies to \(\vec{a}\). The correct answer is (B) \(\vec{a}\). ---

To solve the given problem, we need to evaluate the expression: \[ (\vec{a} \cdot \vec{b}) \vec{b} + (\vec{a} \cdot \vec{c}) \vec{c} + \frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{|\vec{b} \times \vec{c}|^2} (\vec{b} \times \vec{c}) \] where \(\vec{b}\) and \(\vec{c}\) are mutually perpendicular unit vectors, and \(\vec{a}\) is any vector. ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

if veca, vecb and vecc are there mutually perpendicular unit vectors and veca ia a unit vector then find the value of |2veca+ vecb + vecc |^2

If veca,vecb and vecc are three mutually perpendicular unit vectors then (vecr.veca)veca+(vecr.vecb)vecb+(vecr.vecc)vecc= (A) ([veca vecb vecc]vecr)/2 (B) vecr (C) 2[veca vecb vecc] (D) none of these

Show that: (veca+vecb).{(vecb+vecc)xx(vecc+veca)|=2{veca.(vecbxxvecc)}

for any three vectors, veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca) =

For three vectors veca+vecb+vecc=0 , check if (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

If veca, vecb, vecc are any three vectors such that (veca+vecb).vecc=(veca-vecb)vecc=0 then (vecaxxvecb)xxvecc is

If veca is perpendiculasr to both vecb and vecc then (A) veca.(vecbxxvecc)=vec0 (B) vecaxx(vecbxvecc)=vec0 (C) vecaxx(vecb+vecc)=vec0 (D) veca+(vecb+vecc)=vec0

If veca ,vecb and vecc are three mutually orthogonal unit vectors , then the triple product [(veca+vecb+vecc,veca+vecb, vecb +vecc)] equals

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If vecA, vecB, vecC are non-coplanar vectors then (vecA.vecBxxvecC)/(vecCxxvecA.vecB)+(vecB.vecAxxvecC)/(vecC.vecAxxvecB)=