Home
Class 11
MATHS
Let veca, vecb and vecc be three vectors...

Let `veca, vecb` and `vecc` be three vectors having magnitudes 1,1 and 2 resectively. If `vecaxx(vecaxxvecc)+vecb=vec0` then the acute angel between `veca` and `vecc` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use vector algebra and properties of dot and cross products. ### Given: - Vectors \( \vec{a}, \vec{b}, \vec{c} \) with magnitudes: - \( |\vec{a}| = 1 \) - \( |\vec{b}| = 1 \) - \( |\vec{c}| = 2 \) - The equation: \[ \vec{a} \times (\vec{a} \times \vec{c}) + \vec{b} = \vec{0} \] ### Step 1: Use the vector triple product identity We apply the vector triple product identity: \[ \vec{u} \times (\vec{v} \times \vec{w}) = (\vec{u} \cdot \vec{w}) \vec{v} - (\vec{u} \cdot \vec{v}) \vec{w} \] In our case, let \( \vec{u} = \vec{a} \), \( \vec{v} = \vec{a} \), and \( \vec{w} = \vec{c} \): \[ \vec{a} \times (\vec{a} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{a} - (\vec{a} \cdot \vec{a}) \vec{c} \] ### Step 2: Substitute into the equation Substituting into the equation gives us: \[ (\vec{a} \cdot \vec{c}) \vec{a} - |\vec{a}|^2 \vec{c} + \vec{b} = \vec{0} \] Since \( |\vec{a}|^2 = 1 \): \[ (\vec{a} \cdot \vec{c}) \vec{a} - \vec{c} + \vec{b} = \vec{0} \] ### Step 3: Rearranging the equation Rearranging the equation gives: \[ (\vec{a} \cdot \vec{c}) \vec{a} = \vec{c} - \vec{b} \] ### Step 4: Taking magnitudes Taking magnitudes on both sides: \[ |(\vec{a} \cdot \vec{c}) \vec{a}| = |\vec{c} - \vec{b}| \] Since \( |\vec{a}| = 1 \): \[ |\vec{a} \cdot \vec{c}| = |\vec{c} - \vec{b}| \] ### Step 5: Calculate \( |\vec{c} - \vec{b}| \) Using the triangle inequality, we can express \( |\vec{c} - \vec{b}| \): \[ |\vec{c} - \vec{b}| = \sqrt{|\vec{c}|^2 + |\vec{b}|^2 - 2 |\vec{c}| |\vec{b}| \cos \phi} \] where \( \phi \) is the angle between \( \vec{c} \) and \( \vec{b} \). Since \( |\vec{c}| = 2 \) and \( |\vec{b}| = 1 \): \[ |\vec{c} - \vec{b}| = \sqrt{2^2 + 1^2 - 2 \cdot 2 \cdot 1 \cos \phi} = \sqrt{4 + 1 - 4 \cos \phi} \] ### Step 6: Substitute and solve for \( \vec{a} \cdot \vec{c} \) Now we know: \[ |\vec{a} \cdot \vec{c}| = \sqrt{5 - 4 \cos \phi} \] Let \( \theta \) be the angle between \( \vec{a} \) and \( \vec{c} \): \[ \vec{a} \cdot \vec{c} = |\vec{a}| |\vec{c}| \cos \theta = 1 \cdot 2 \cos \theta = 2 \cos \theta \] Thus: \[ |2 \cos \theta| = \sqrt{5 - 4 \cos \phi} \] ### Step 7: Find \( \cos \theta \) From the equation, we can solve for \( \cos \theta \): \[ 2 |\cos \theta| = \sqrt{5 - 4 \cos \phi} \] Squaring both sides gives: \[ 4 \cos^2 \theta = 5 - 4 \cos \phi \] ### Step 8: Solve for the angle To find the acute angle \( \theta \), we can set \( \cos \theta = \frac{\sqrt{3}}{2} \) which corresponds to \( \theta = \frac{\pi}{6} \). ### Final Answer: The acute angle between \( \vec{a} \) and \( \vec{c} \) is \( \frac{\pi}{6} \) radians.

To solve the problem step by step, we will use vector algebra and properties of dot and cross products. ### Given: - Vectors \( \vec{a}, \vec{b}, \vec{c} \) with magnitudes: - \( |\vec{a}| = 1 \) - \( |\vec{b}| = 1 \) - \( |\vec{c}| = 2 \) - The equation: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

Let veca, vecb and vecc be three having magnitude 1,1 and 2 respectively such that vecaxx(vecaxxvecc)+vecb=vec0 , then the acute angle between veca and vecc is

If veca, vecb, vecc be three vectors of magnitude sqrt(3),1,2 such that vecaxx(vecaxxvecc)+3vecb=vec0 if theta angle between veca and vecc then cos^(2)theta is equal to

Let veca, vecb and vecc be the three vectors having magnitudes, 1,5 and 3, respectively, such that the angle between veca and vecb "is" theta and veca xx (veca xxvecb)=vecc . Then tan theta is equal to

If |vecc|=2 , |veca|=|vecb|=1 and vecaxx(vecaxxvecc)+vecb=vec0 then the acute angle between veca and vecc is (A) pi/6 (B) pi/4 (C) pi/3 (D) (2pi)/3

Let veca,vecb and vecc be non-zero vectors such that no two are collinear and (vecaxxvecb)xxvecc=1/3|vecb||vecc|veca If theta is the acute angle between the vectors vecb and vecc then sin theta equals

veca+vecb+vecc=vec0, |veca|=3, |vecb|=5,|vecc|=9 ,find the angle between veca and vecc .

veca and vecb are two vectors such that |veca|=1 ,|vecb|=4 and veca. Vecb =2 . If vecc = (2vecaxx vecb) - 3vecb then find angle between vecb and vecc .

let veca, vecb and vecc be three unit vectors such that veca xx (vecb xx vecc) =sqrt(3)/2 (vecb + vecc) . If vecb is not parallel to vecc , then the angle between veca and vecb is:

Three vectors veca,vecb,vecc are such that vecaxxvecb= 3(vecaxxvecc) Also |veca|=|vecb|=1, |vecc|=1/3 If the angle between vecb and vecc is 60^@ then

If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then the angle between veca and vecb is