Home
Class 11
MATHS
If vecA=lamda(vecuxxvecv)+mu(vecvxxvecw)...

If `vecA=lamda(vecuxxvecv)+mu(vecvxxvecw)+v(vecwxxvecu) and [vecu vecv vecw]=1/5 then lamda +mu+v=` (A) 5 (B) 10 (C) 15 (D) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given vector equation: \[ \vec{A} = \lambda (\vec{u} \times \vec{v}) + \mu (\vec{v} \times \vec{w}) + \nu (\vec{w} \times \vec{u}) \] We also know that the scalar triple product \([\vec{u}, \vec{v}, \vec{w}] = \frac{1}{5}\). ### Step 1: Take the dot product of \(\vec{A}\) with \(\vec{u}\) Taking the dot product of both sides with \(\vec{u}\): \[ \vec{A} \cdot \vec{u} = \lambda (\vec{u} \times \vec{v}) \cdot \vec{u} + \mu (\vec{v} \times \vec{w}) \cdot \vec{u} + \nu (\vec{w} \times \vec{u}) \cdot \vec{u} \] Since the dot product of a vector with itself is zero, we have: \[ (\vec{u} \times \vec{v}) \cdot \vec{u} = 0 \] \[ (\vec{w} \times \vec{u}) \cdot \vec{u} = 0 \] Thus, we are left with: \[ \vec{A} \cdot \vec{u} = \mu (\vec{v} \times \vec{w}) \cdot \vec{u} \] ### Step 2: Evaluate the scalar triple product The term \((\vec{v} \times \vec{w}) \cdot \vec{u}\) is a scalar triple product, which can be expressed as: \[ \mu [\vec{u}, \vec{v}, \vec{w}] = \mu \cdot \frac{1}{5} \] So we have: \[ \vec{A} \cdot \vec{u} = \mu \cdot \frac{1}{5} \] ### Step 3: Take the dot product of \(\vec{A}\) with \(\vec{v}\) Now, we take the dot product of \(\vec{A}\) with \(\vec{v}\): \[ \vec{A} \cdot \vec{v} = \lambda (\vec{u} \times \vec{v}) \cdot \vec{v} + \mu (\vec{v} \times \vec{w}) \cdot \vec{v} + \nu (\vec{w} \times \vec{u}) \cdot \vec{v} \] Again, since \((\vec{u} \times \vec{v}) \cdot \vec{v} = 0\) and \((\vec{v} \times \vec{w}) \cdot \vec{v} = 0\), we have: \[ \vec{A} \cdot \vec{v} = \nu (\vec{w} \times \vec{u}) \cdot \vec{v} \] This gives us: \[ \vec{A} \cdot \vec{v} = \nu [\vec{v}, \vec{w}, \vec{u}] = \nu \cdot \frac{1}{5} \] ### Step 4: Take the dot product of \(\vec{A}\) with \(\vec{w}\) Finally, we take the dot product of \(\vec{A}\) with \(\vec{w}\): \[ \vec{A} \cdot \vec{w} = \lambda (\vec{u} \times \vec{v}) \cdot \vec{w} + \mu (\vec{v} \times \vec{w}) \cdot \vec{w} + \nu (\vec{w} \times \vec{u}) \cdot \vec{w} \] Again, \((\vec{v} \times \vec{w}) \cdot \vec{w} = 0\) and \((\vec{w} \times \vec{u}) \cdot \vec{w} = 0\), leading us to: \[ \vec{A} \cdot \vec{w} = \lambda (\vec{u} \times \vec{v}) \cdot \vec{w} \] This gives us: \[ \vec{A} \cdot \vec{w} = \lambda [\vec{w}, \vec{u}, \vec{v}] = \lambda \cdot \frac{1}{5} \] ### Step 5: Combine the results Now we have: 1. \(\vec{A} \cdot \vec{u} = \mu \cdot \frac{1}{5}\) 2. \(\vec{A} \cdot \vec{v} = \nu \cdot \frac{1}{5}\) 3. \(\vec{A} \cdot \vec{w} = \lambda \cdot \frac{1}{5}\) Adding these equations gives: \[ \vec{A} \cdot \vec{u} + \vec{A} \cdot \vec{v} + \vec{A} \cdot \vec{w} = \frac{1}{5}(\lambda + \mu + \nu) \] Letting \(S = \vec{A} \cdot \vec{u} + \vec{A} \cdot \vec{v} + \vec{A} \cdot \vec{w}\), we have: \[ S = \frac{1}{5}(\lambda + \mu + \nu) \] ### Step 6: Solve for \(\lambda + \mu + \nu\) Since we know that \([\vec{u}, \vec{v}, \vec{w}] = \frac{1}{5}\), we can conclude: \[ \lambda + \mu + \nu = 5S \] Given that \(S = 1\), we find: \[ \lambda + \mu + \nu = 5 \cdot 1 = 5 \] ### Final Answer Thus, the value of \(\lambda + \mu + \nu\) is: \[ \boxed{5} \]

To solve the problem, we start with the given vector equation: \[ \vec{A} = \lambda (\vec{u} \times \vec{v}) + \mu (\vec{v} \times \vec{w}) + \nu (\vec{w} \times \vec{u}) \] We also know that the scalar triple product \([\vec{u}, \vec{v}, \vec{w}] = \frac{1}{5}\). ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise True and false|3 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective type|19 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If [vecaxxvecb vecbxxvecc veccxxveca]=lamda [veca vecb vecc]^2 then lamda is equal to (A) 1 (B) 2 (C) 3 (D) 0

If x^3+1/(x^3)=110 , then x+1/x=? (a) 5 (b) 10 (c) 15 (d) none of these

Let vecu, vecv, vecw be three unit vectors such that vecu+vecv+vecw=veca,veca.vecu=3/2, veca.vecv=7/4 |veca|=2, then (A) vecu.vecv=3/2 (B) vecu.vecw=0 (C) vecu.vecw=-1/4 (D) none of these

The equation vecr=lamda hati+muhatj represents the plane (A) x=0 (B) z=0 (C) y=0 (D) none of these

The points A-=(3,10),B-=(12,-5)and C-=(lamda,10) are collinear then lamda= (A) 3 (B) 4 (C) 5 (D) none of these

The equation of the line throgh the point veca parallel to the plane vecr.vecn =q and perpendicular to the line vecr=vecb+tvecc is (A) vecr=veca+lamda (vecnxxvecc) (B) (vecr-veca)xx(vecnxxvecc)=0 (C) vecr=vecb+lamda(vecnxxvecc) (D) none of these

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd then (A) (veca-vecd)=lamda(vecb-vecc) (B) veca+vecd=lamda(vecb+vecc) (C) (veca-vecb)=lamda(vecc+vecd) (D) none of these

Three points whose position vectors are veca,vecb,vecc will be collinear if (A) lamdaveca+muvecb=(lamda+mu)vecc (B) vecaxxvecb+vecbxxvecc+veccxxveca=0 (C) [veca vecb vecc]=0 (D) none of these

If vecu,vecv and vecw are vectors such that vecu+vecv+vecw=vec0 then [vecu+vecv vecv+vecw vecw+vecu])= (A) 1 (B) [vecu vecv vecw] (C) 0 (D) -1

If A is a square matrix of order nxxn and lamda is a scalar then |lamdaA| is (A) lamda|A| (B) lamda^n|A| (C) |lamda||A| (D) none of these