Home
Class 11
MATHS
If vecx.veca=0vecx.vecb=0 and vecx.vecc=...

If `vecx.veca=0vecx.vecb=0 and vecx.vecc=0` for some non zero vector `vecx` then show that `[veca vecb vecc]=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to show that if a non-zero vector \(\vec{x}\) is orthogonal to three vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), then the scalar triple product \([\vec{a}, \vec{b}, \vec{c}] = 0\). ### Step-by-Step Solution: 1. **Understanding the Given Conditions**: We have the following conditions: \[ \vec{x} \cdot \vec{a} = 0, \quad \vec{x} \cdot \vec{b} = 0, \quad \vec{x} \cdot \vec{c} = 0 \] This means that the vector \(\vec{x}\) is orthogonal to the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). 2. **Analyzing the Implications**: Since \(\vec{x}\) is orthogonal to \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), it implies that all three vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) lie in the same plane. This is because if a vector is orthogonal to multiple vectors, those vectors must be coplanar. 3. **Using the Definition of Scalar Triple Product**: The scalar triple product \([\vec{a}, \vec{b}, \vec{c}]\) is defined as the volume of the parallelepiped formed by the vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). If the vectors are coplanar, the volume is zero: \[ [\vec{a}, \vec{b}, \vec{c}] = \vec{a} \cdot (\vec{b} \times \vec{c}) \] 4. **Conclusion**: Since \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\) are coplanar, the scalar triple product must equal zero: \[ [\vec{a}, \vec{b}, \vec{c}] = 0 \] Thus, we have shown that \([\vec{a}, \vec{b}, \vec{c}] = 0\).

To solve the problem, we need to show that if a non-zero vector \(\vec{x}\) is orthogonal to three vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\), then the scalar triple product \([\vec{a}, \vec{b}, \vec{c}] = 0\). ### Step-by-Step Solution: 1. **Understanding the Given Conditions**: We have the following conditions: \[ \vec{x} \cdot \vec{a} = 0, \quad \vec{x} \cdot \vec{b} = 0, \quad \vec{x} \cdot \vec{c} = 0 ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

If vecr.veca=vecr.vecb=vecr.vecc=0 for some non-zero vectro vecr , then the value of [(veca, vecb, vecc)] is

If vecr.veca=0,vecr.vecb=0andvecr.vecc=0 for some non-zero vector vecr , then the value of veca.(vecbxxvecc) is…… .

If vecX.vecA=0, vecX.vecB=0,vecX.vecC=0 for some non-zero vector, vecX , then [vecAvecBvecC]=0

Let vecr be a non - zero vector satisfying vecr.veca = vecr.vecb =vecr.vecc =0 for given non- zero vectors veca vecb and vecc Statement 1: [ veca - vecb vecb - vecc vecc- veca] =0 Statement 2: [veca vecb vecc] =0

If vecr.veca=vecr.vecb=vecr.vecc=1/2 for some non zero vector vecr and veca,vecb,vecc are non coplanar, then the area of the triangle whose vertices are A(veca),B(vecb) and C(vecc) is

given that veca. vecb = veca.vecc, veca xx vecb= veca xx vecc and veca is not a zero vector. Show that vecb=vecc .

If veca, vecb and vecc are three non-coplanar non-zero vectors, then prove that (veca.veca) vecb xx vecc + (veca.vecb) vecc xx veca + (veca.vecc)veca xx vecb = [vecb vecc veca] veca

If veca, vecb and vecc are three non - zero and non - coplanar vectors such that [(veca,vecb,vecc)]=4 , then the value of (veca+3vecb-vecc).((veca-vecb)xx(veca-2vecb-3vecc)) equal to

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .

Vectors vecx,vecy,vecz each of magnitude sqrt(2) make angles of 60^0 with each other. If vecx xx (vecyxxvecz) = veca, vecy xx (veczxxvecx) = vecb and vecx xx vecy = vecc . Find vecx, vecy, vecz in terms of veca, vecb, vecc .