Home
Class 11
MATHS
for any three vectors, veca, vecb and ve...

for any three vectors, `veca, vecb and vecc , (veca-vecb) . (vecb -vecc) xx (vecc -veca)` =

Text Solution

AI Generated Solution

To solve the problem \((\vec{a} - \vec{b}) \cdot ((\vec{b} - \vec{c}) \times (\vec{c} - \vec{a}))\), we can interpret this expression as a scalar triple product. Here’s a step-by-step solution: ### Step 1: Identify the vectors Let: - \(\vec{u} = \vec{a} - \vec{b}\) - \(\vec{v} = \vec{b} - \vec{c}\) - \(\vec{w} = \vec{c} - \vec{a}\) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.1|18 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise Exercise 2.2|15 Videos
  • DIFFERENT PRODUCTS OF VECTORS AND THEIR GEOMETRICAL APPLICATIONS

    CENGAGE ENGLISH|Exercise fill in the blanks|14 Videos
  • CONIC SECTIONS

    CENGAGE ENGLISH|Exercise All Questions|1344 Videos
  • LIMITS AND DERIVATIVES

    CENGAGE ENGLISH|Exercise All Questions|691 Videos

Similar Questions

Explore conceptually related problems

For any three vectors veca,vecb,vecc show that (veca-vecb),(vecb-vecc) (vecc-veca) are coplanar.

For any three vectors veca, vecb, vecc the value of [(veca-vecb, vecb-vecc, vecc-veca)] , is

For any three vectors veca, vecb, vecc the value of [(veca+vecb,vecb+vecc,vecc+veca)] is

For non-zero vectors veca, vecb and vecc , |(veca xx vecb) .vecc = |veca||vecb||vecc| holds if and only if

For three non - zero vectors veca, vecb and vecc , if [(veca, vecb and vecc)]=4 , then [vecaxx(vecb+2vecc)vecbxx(vecc-3veca)vecc xx(3veca+vecb)] is equal to

If vecb and vecc are unit vectors, then for any arbitary vector veca, (((veca xx vecb) + (veca xx vecc))xx (vecb xx vecc)) .(vecb -vecc) is always equal to

If two out to the three vectors , veca, vecb , vecc are unit vectors such that veca + vecb + vecc =0 and 2(veca.vecb + vecb .vecc + vecc.veca) +3=0 then the length of the third vector is

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

For any four vectors veca, vecb, vecc, vecd the expressions (vecb xx vecc).(veca xx vecd) +(vecc xx veca).(vecb xx vecd)+(veca xx vecb).(vecc xx vecd) is always equal to:

If veca , vecb and vecc are three vectors such that vecaxx vecb =vecc, vecb xx vecc= veca, vecc xx veca =vecb then prove that |veca|= |vecb|=|vecc|