Home
Class 12
MATHS
Evaluate: int(x^2tan^(-1)x^3)/(1+x^6)dx...

Evaluate: `int(x^2tan^(-1)x^3)/(1+x^6)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{x^2 \tan^{-1}(x^3)}{1+x^6} \, dx, \] we can use a substitution method. Let's go through the steps: ### Step 1: Substitution Let \[ t = \tan^{-1}(x^3). \] Then, we need to find \(dt\). The derivative of \(t\) with respect to \(x\) is: \[ \frac{dt}{dx} = \frac{1}{1 + (x^3)^2} \cdot \frac{d}{dx}(x^3) = \frac{3x^2}{1 + x^6}. \] Thus, we have: \[ dt = \frac{3x^2}{1 + x^6} \, dx. \] Rearranging gives: \[ dx = \frac{1 + x^6}{3x^2} \, dt. \] ### Step 2: Substitute in the Integral Now we substitute \(t\) and \(dx\) into the integral: \[ \int \frac{x^2 \tan^{-1}(x^3)}{1+x^6} \, dx = \int \frac{x^2 t}{1+x^6} \cdot \frac{1+x^6}{3x^2} \, dt. \] The \(x^2\) and \(1+x^6\) terms cancel out: \[ = \frac{1}{3} \int t \, dt. \] ### Step 3: Integrate Now we can integrate: \[ \frac{1}{3} \int t \, dt = \frac{1}{3} \cdot \frac{t^2}{2} + C = \frac{t^2}{6} + C. \] ### Step 4: Substitute Back Now we substitute back \(t = \tan^{-1}(x^3)\): \[ = \frac{(\tan^{-1}(x^3))^2}{6} + C. \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{x^2 \tan^{-1}(x^3)}{1+x^6} \, dx = \frac{(\tan^{-1}(x^3))^2}{6} + C. \] ---

To evaluate the integral \[ \int \frac{x^2 \tan^{-1}(x^3)}{1+x^6} \, dx, \] we can use a substitution method. Let's go through the steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^2tan^(-1)x)/(1+x^2)\ dx

Evaluate: int(x^2tan^(-1)x)/(1+x^2)\ dx

Evaluate: int(x^(2)"tan"^(-1)x^(3))/(1+x^(6))dx

Evaluate: int(e^tan^(-1)(x))/(1+x^2)\ dx

Evaluate: int(tan^(-1)x)/(1+x^2)dx

Evaluate: int(sin(tan^(-1)x)/(1+x^2)dx )

Evaluate: int(tan^(-1)x^2)\ x\ dx

Evaluate: int(x^6)/(x-1)\ dx

Evaluate: int(tan^-1x)^2/(1+x^2)dx

Evaluate: inte^(tan^-1x)/(1+x^2)dx