Home
Class 12
MATHS
Evaluate: int(sqrt(x)dx)/(1+x)...

Evaluate: `int(sqrt(x)dx)/(1+x)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{\sqrt{x}}{1+x} \, dx, \] we can use the substitution method. Let's go through the solution step by step. ### Step 1: Substitution Let \( x = t^2 \). Then, we have: \[ dx = 2t \, dt. \] ### Step 2: Rewrite the Integral Substituting \( x = t^2 \) into the integral gives: \[ \sqrt{x} = \sqrt{t^2} = t, \] and \[ 1 + x = 1 + t^2. \] Thus, the integral becomes: \[ \int \frac{\sqrt{x}}{1+x} \, dx = \int \frac{t}{1+t^2} \cdot 2t \, dt = 2 \int \frac{t^2}{1+t^2} \, dt. \] ### Step 3: Simplify the Integral We can simplify \( \frac{t^2}{1+t^2} \) as follows: \[ \frac{t^2}{1+t^2} = 1 - \frac{1}{1+t^2}. \] Thus, we can rewrite the integral: \[ 2 \int \frac{t^2}{1+t^2} \, dt = 2 \int \left(1 - \frac{1}{1+t^2}\right) dt = 2 \int 1 \, dt - 2 \int \frac{1}{1+t^2} \, dt. \] ### Step 4: Evaluate the Integrals Now, we evaluate each integral separately: 1. The first integral: \[ 2 \int 1 \, dt = 2t. \] 2. The second integral: \[ -2 \int \frac{1}{1+t^2} \, dt = -2 \tan^{-1}(t). \] ### Step 5: Combine the Results Combining both results, we have: \[ \int \frac{\sqrt{x}}{1+x} \, dx = 2t - 2 \tan^{-1}(t) + C. \] ### Step 6: Substitute Back Now, substituting back \( t = \sqrt{x} \): \[ = 2\sqrt{x} - 2 \tan^{-1}(\sqrt{x}) + C. \] ### Final Answer Thus, the final result is: \[ \int \frac{\sqrt{x}}{1+x} \, dx = 2\sqrt{x} - 2 \tan^{-1}(\sqrt{x}) + C. \] ---

To evaluate the integral \[ \int \frac{\sqrt{x}}{1+x} \, dx, \] we can use the substitution method. Let's go through the solution step by step. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sqrt(x))/(x+1)\ dx

Evaluate: int(sqrt(x))/(x+1)\ dx

Evaluate: int1/(sqrt(x)+x)dx

Evaluate: int1/(1+sqrt(x))dx

Evaluate: int(sqrt(x))/(sqrt(x)-x^(1/3))dx

Evaluate: int(sqrt(x))/(sqrt(x)-x^(1/3))dx

Evaluate: int(x+sqrt(x+1))/(x+2)dx

Evaluate: int(sqrt(1+x^2))/(1-x^2)dx

Evaluate: int(sqrt(1+x^2))/(1-x^2)dx

Evaluate: int sqrt((1-x)/(1+x))dx