Home
Class 12
MATHS
Evaluate: int(e^(2x)-2e^x)/(e^(2x)+1)dx...

Evaluate: `int(e^(2x)-2e^x)/(e^(2x)+1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{e^{2x} - 2e^x}{e^{2x} + 1} \, dx, \] we can split the integral into two parts: \[ I = \int \frac{e^{2x}}{e^{2x} + 1} \, dx - 2 \int \frac{e^x}{e^{2x} + 1} \, dx. \] ### Step 1: Evaluate the first integral Let \[ t = e^{2x} + 1. \] Then, differentiating \(t\) gives: \[ dt = 2e^{2x} \, dx \implies dx = \frac{dt}{2e^{2x}}. \] We can express \(e^{2x}\) in terms of \(t\): \[ e^{2x} = t - 1. \] Substituting these into the first integral: \[ \int \frac{e^{2x}}{e^{2x} + 1} \, dx = \int \frac{t - 1}{t} \cdot \frac{dt}{2(t - 1)} = \frac{1}{2} \int \frac{dt}{t} - \frac{1}{2} \int \frac{dt}{t - 1}. \] This simplifies to: \[ \frac{1}{2} \left( \ln |t| - \ln |t - 1| \right) = \frac{1}{2} \ln \left| \frac{t}{t - 1} \right|. \] Substituting back \(t = e^{2x} + 1\): \[ \frac{1}{2} \ln \left| \frac{e^{2x} + 1}{e^{2x}} \right| = \frac{1}{2} \ln \left( 1 + \frac{1}{e^{2x}} \right). \] ### Step 2: Evaluate the second integral Now consider the second integral: \[ -2 \int \frac{e^x}{e^{2x} + 1} \, dx. \] Let \[ v = e^x \implies dv = e^x \, dx \implies dx = \frac{dv}{v}. \] Substituting these into the integral gives: \[ -2 \int \frac{v}{v^2 + 1} \cdot \frac{dv}{v} = -2 \int \frac{1}{v^2 + 1} \, dv = -2 \tan^{-1}(v). \] Substituting back \(v = e^x\): \[ -2 \tan^{-1}(e^x). \] ### Step 3: Combine the results Combining both parts, we have: \[ I = \frac{1}{2} \ln \left( 1 + \frac{1}{e^{2x}} \right) - 2 \tan^{-1}(e^x) + C. \] ### Final Answer Thus, the final result is: \[ I = \frac{1}{2} \ln \left( e^{2x} + 1 \right) - 2 \tan^{-1}(e^x) + C. \]

To evaluate the integral \[ I = \int \frac{e^{2x} - 2e^x}{e^{2x} + 1} \, dx, \] we can split the integral into two parts: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(e^(2x))/(e^(2x)-2)dx

Evaluate: (i) int(e^(2x))/(e^(2x)-2)\ dx

Evaluate: int(e^(2x))/(1+e^x)dx

Evaluate : int(e^(2x))/(e^(x) + 2) dx

Evaluate int(x+e^(2x))dx

Evaluate int_(0)^(4)(e^(x))/(1+e^(2x))dx

Evaluate: int(e^(-x))/(16+9e^(-2x))\ dx

Evaluate: int(e^x)/((1+e^x)(2+e^x))\ dx

Evaluate: inte^(2x)/(1+e^(4x))dx

Evaluate: int(x e^(x)dx)/((x+1)^(2))