Home
Class 12
MATHS
Evaluate: int1/(e^x+e^(-x))\ dx...

Evaluate: `int1/(e^x+e^(-x))\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1}{e^x + e^{-x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ \frac{1}{e^x + e^{-x}} = \frac{1}{\frac{e^{2x} + 1}{e^x}} = \frac{e^x}{e^{2x} + 1} \] ### Step 2: Substitute Let \( t = e^x \). Then, the differential \( dx \) can be expressed as: \[ dx = \frac{dt}{t} \] Now, substituting \( e^x = t \) into the integral gives: \[ \int \frac{e^x}{e^{2x} + 1} \, dx = \int \frac{t}{t^2 + 1} \cdot \frac{dt}{t} = \int \frac{1}{t^2 + 1} \, dt \] ### Step 3: Integrate The integral \( \int \frac{1}{t^2 + 1} \, dt \) is a standard integral, which results in: \[ \int \frac{1}{t^2 + 1} \, dt = \tan^{-1}(t) + C \] ### Step 4: Substitute back Now, we substitute back \( t = e^x \): \[ \tan^{-1}(t) + C = \tan^{-1}(e^x) + C \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{1}{e^x + e^{-x}} \, dx = \tan^{-1}(e^x) + C \] ---

To evaluate the integral \( \int \frac{1}{e^x + e^{-x}} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ \frac{1}{e^x + e^{-x}} = \frac{1}{\frac{e^{2x} + 1}{e^x}} = \frac{e^x}{e^{2x} + 1} \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(1+e^(-x))\ dx

Evaluate: int1/(e^x+1)\ dx

Evaluate int1 +e^x dx

Evaluate: int(e^x)/(1+e^(2x))dx

Evaluate: int(e^x)/(1+e^(2x))dx

Evaluate: int(e^x)/((1+e^x)^2)\ dx

Evaluate: int1/(2\ e^(2x)+3\ e^x+1)\ dx

Evaluate : int(1)/(e^(x)-1)dx

Evaluate: int(e^x-e^(-x))/(e^x+e^(-x))dx

Evaluate: int(e^x-e^(-x))/(e^x+e^(-x))\ dx