Home
Class 12
MATHS
Evaluate: int(log(1+1/x))/(x(1+x))dx...

Evaluate: `int(log(1+1/x))/(x(1+x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{\log(1 + \frac{1}{x})}{x(1+x)} \, dx, \] we can follow these steps: ### Step 1: Substitution Let \( t = \log(1 + \frac{1}{x}) \). To find \( dt \), we differentiate \( t \): \[ t = \log(1 + \frac{1}{x}) \implies dt = \frac{1}{1 + \frac{1}{x}} \cdot \left(-\frac{1}{x^2}\right) \, dx = -\frac{1}{x^2 + x} \, dx. \] ### Step 2: Rearranging \( dx \) From the expression for \( dt \), we can rearrange it to express \( dx \): \[ dx = - (x^2 + x) \, dt. \] ### Step 3: Substitute in the Integral Now, substitute \( t \) and \( dx \) into the integral: \[ \int \frac{t}{x(1+x)} \cdot - (x^2 + x) \, dt. \] Notice that \( x(1+x) = x^2 + x \), so the integral simplifies to: \[ -\int t \, dt. \] ### Step 4: Integrate Now, we can integrate: \[ -\int t \, dt = -\frac{t^2}{2} + C. \] ### Step 5: Substitute Back for \( t \) Now, substitute back \( t = \log(1 + \frac{1}{x}) \): \[ -\frac{1}{2} \left(\log(1 + \frac{1}{x})\right)^2 + C. \] ### Final Answer Thus, the final answer is: \[ -\frac{1}{2} \left(\log(1 + \frac{1}{x})\right)^2 + C. \] ---

To evaluate the integral \[ \int \frac{\log(1 + \frac{1}{x})}{x(1+x)} \, dx, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(log(1-x))/(1-x)\ dx

Evaluate int_(0)^(1)(ln(1+x))/(1+x)dx

Evaluate: int(1)/(x)ln((x)/(e^(x)))dx=

int(tan(1+log x))/(x) dx

Evaluate int ((1 - x)/(1 + x)) dx

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

Evaluate : int_(0)^(1)(log(1+x))/(1+x^2)dx

Evaluate: (i) int(logx)/x\ dx (ii) int(log(1+1/x))/(x(1+x))\ dx

Evaluate int_-1^1 log((3-x)/(3+x))dx

Evaluate: int1/((x-1)(x+1)(x+2))\ dx