Home
Class 12
MATHS
Evaluate: int(dx)/(x^(2/3)(1+x^(2/3)))...

Evaluate: `int(dx)/(x^(2/3)(1+x^(2/3)))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{dx}{x^{2/3}(1+x^{2/3})}, \] we can follow these steps: ### Step 1: Substitution Let \( x = t^3 \). Then, the differential \( dx \) can be expressed as: \[ dx = 3t^2 dt. \] ### Step 2: Rewrite the Integral Substituting \( x = t^3 \) into the integral, we have: \[ x^{2/3} = (t^3)^{2/3} = t^2. \] Thus, the integral becomes: \[ \int \frac{3t^2 dt}{t^2(1 + t^2)}. \] ### Step 3: Simplify the Integral The \( t^2 \) in the numerator and denominator cancels out: \[ \int \frac{3 dt}{1 + t^2}. \] ### Step 4: Integrate The integral \( \int \frac{dt}{1 + t^2} \) is a standard integral that equals \( \tan^{-1}(t) \). Therefore, we have: \[ 3 \int \frac{dt}{1 + t^2} = 3 \tan^{-1}(t) + C, \] where \( C \) is the constant of integration. ### Step 5: Back Substitute Now, we substitute back \( t = x^{1/3} \): \[ 3 \tan^{-1}(t) = 3 \tan^{-1}(x^{1/3}) + C. \] ### Final Answer Thus, the final result of the integral is: \[ \int \frac{dx}{x^{2/3}(1+x^{2/3})} = 3 \tan^{-1}(x^{1/3}) + C. \] ---

To evaluate the integral \[ \int \frac{dx}{x^{2/3}(1+x^{2/3})}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(x^(1/2)+x^(1/3))

Evaluate int(x dx)/(x^(3)sqrt(x^(2)-1)).

Evaluate: int(2x+1)/(x^2+x+3)dx

Evaluate: int(dx)/(x^3sqrt(x^2-1))

Evaluate: int(x+1)/(x^2+x+3)dx

Evaluate: int(x^2)/(1+x^3)\ dx

Evaluate: int(x^3-1)/(x^2)\ dx

Evaluate: int(x^3)/((x^2+1)^3)dx

Evaluate: int(x^3)/((x^2+1)^3)dx

Evaluate int(x^3)/(x-2)dx