Home
Class 12
MATHS
Evaluate inte^(3logx)(x^(4)+1)^(-1)dx...

Evaluate `inte^(3logx)(x^(4)+1)^(-1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int e^{3 \log x} \cdot (x^4 + 1)^{-1} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start by simplifying \( e^{3 \log x} \). Using the property \( e^{\log a} = a \), we have: \[ e^{3 \log x} = e^{\log(x^3)} = x^3 \] Thus, the integral becomes: \[ \int \frac{x^3}{x^4 + 1} \, dx \] ### Step 2: Rewrite the integral We can rewrite the integral as follows: \[ \int \frac{x^3}{x^4 + 1} \, dx \] ### Step 3: Use substitution Next, we can use the substitution \( t = x^4 + 1 \). Then, we differentiate \( t \): \[ dt = 4x^3 \, dx \quad \Rightarrow \quad dx = \frac{dt}{4x^3} \] ### Step 4: Substitute in the integral Now, substituting \( t \) and \( dx \) into the integral gives: \[ \int \frac{x^3}{t} \cdot \frac{dt}{4x^3} = \int \frac{1}{4t} \, dt \] ### Step 5: Integrate Now we can integrate: \[ \int \frac{1}{4t} \, dt = \frac{1}{4} \ln |t| + C \] ### Step 6: Substitute back Now we substitute back \( t = x^4 + 1 \): \[ \frac{1}{4} \ln |x^4 + 1| + C \] ### Final Answer Thus, the final answer is: \[ \int e^{3 \log x} \cdot (x^4 + 1)^{-1} \, dx = \frac{1}{4} \ln(x^4 + 1) + C \]

To evaluate the integral \( \int e^{3 \log x} \cdot (x^4 + 1)^{-1} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start by simplifying \( e^{3 \log x} \). Using the property \( e^{\log a} = a \), we have: \[ e^{3 \log x} = e^{\log(x^3)} = x^3 \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_1^2(logx)/(x)dx

Evaluate: int(logx)/(x^3)\ dx

Evaluate: int(logx)/x\ dx

Evaluate: int(logx)/(x^2)\ dx

Evaluate: int_1^2(logx)/(x^2)dx

Evaluate: int(logx^2)/(x)dx

Evaluate: int_0^1logx dx

Evaluate: int(3x)/(1+2x^4)dx

Evaluate int \logx/x\dx

Evaluate: int(log(logx)/x)\ dx