Home
Class 12
MATHS
Evaluate intsin^(3)x cos^(2)x dx...

Evaluate `intsin^(3)x cos^(2)x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int \sin^3 x \cos^2 x \, dx\), we can follow these steps: ### Step 1: Rewrite the integral We can express \(\sin^3 x\) as \(\sin^2 x \cdot \sin x\) and use the identity \(\sin^2 x = 1 - \cos^2 x\): \[ \int \sin^3 x \cos^2 x \, dx = \int \sin^2 x \cos^2 x \sin x \, dx = \int (1 - \cos^2 x) \cos^2 x \sin x \, dx \] ### Step 2: Substitute for \(u\) Let \(u = \cos x\). Then, the derivative \(du = -\sin x \, dx\) or \(-du = \sin x \, dx\). We can rewrite the integral in terms of \(u\): \[ \int (1 - u^2) u^2 (-du) = -\int (1 - u^2) u^2 \, du \] ### Step 3: Expand the integrand Now, expand the integrand: \[ -\int (u^2 - u^4) \, du = -\left( \int u^2 \, du - \int u^4 \, du \right) \] ### Step 4: Integrate term by term Now we can integrate each term: \[ -\left( \frac{u^3}{3} - \frac{u^5}{5} \right) + C = -\frac{u^3}{3} + \frac{u^5}{5} + C \] ### Step 5: Substitute back for \(u\) Now, substitute back \(u = \cos x\): \[ -\frac{\cos^3 x}{3} + \frac{\cos^5 x}{5} + C \] ### Final Answer Thus, the final answer is: \[ \int \sin^3 x \cos^2 x \, dx = -\frac{\cos^3 x}{3} + \frac{\cos^5 x}{5} + C \] ---

To evaluate the integral \(\int \sin^3 x \cos^2 x \, dx\), we can follow these steps: ### Step 1: Rewrite the integral We can express \(\sin^3 x\) as \(\sin^2 x \cdot \sin x\) and use the identity \(\sin^2 x = 1 - \cos^2 x\): \[ \int \sin^3 x \cos^2 x \, dx = \int \sin^2 x \cos^2 x \sin x \, dx = \int (1 - \cos^2 x) \cos^2 x \sin x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate intsin3x\dx

Evaluate: intsin^3xcos^2x dx

Evaluate: intsin^3xcos^2x dx

Find intsin^(3)x cos^(5)x dx .

Evaluate: intsin^2x\ dx

Evaluate: intsin^4x\ dx

Evaluate: intsin^4x\ dx

Evaluate: intsin3x\ dx

Evaluate intsin3xcos5x\ dx

Evaluate: intsin^(-1)x\ dx