Home
Class 12
MATHS
Evaluate: int(ddx)/(sqrt(1+x^2)+sqrt((1+...

Evaluate: `int(ddx)/(sqrt(1+x^2)+sqrt((1+x^2)^3))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x \, dx}{\sqrt{1+x^2} + \sqrt{(1+x^2)^3}} \] we can follow these steps: ### Step 1: Simplify the Integral First, we can factor out \(\sqrt{1+x^2}\) from the denominator: \[ I = \int \frac{x \, dx}{\sqrt{1+x^2} \left(1 + \sqrt{(1+x^2)^2}\right)} \] Notice that \(\sqrt{(1+x^2)^2} = 1+x^2\). Thus, we can rewrite the integral as: \[ I = \int \frac{x \, dx}{\sqrt{1+x^2} \left(1 + (1+x^2)\right)} = \int \frac{x \, dx}{\sqrt{1+x^2} (2+x^2)} \] ### Step 2: Use Substitution Let us use the substitution \(t = \sqrt{1+x^2}\). Then, we have: \[ t^2 = 1 + x^2 \implies x^2 = t^2 - 1 \implies x = \sqrt{t^2 - 1} \] Differentiating both sides gives: \[ dx = \frac{x}{\sqrt{1+x^2}} \, dt = \frac{\sqrt{t^2 - 1}}{t} \, dt \] ### Step 3: Substitute into the Integral Now substitute \(x\) and \(dx\) into the integral: \[ I = \int \frac{\sqrt{t^2 - 1}}{t} \cdot \frac{\sqrt{t^2 - 1}}{t(2 + (t^2 - 1))} \, dt \] This simplifies to: \[ I = \int \frac{(t^2 - 1)}{t^2 (1 + t^2)} \, dt \] ### Step 4: Simplify Further Now, we can break this integral into two parts: \[ I = \int \left(\frac{1}{1+t^2} - \frac{1}{t^2}\right) dt \] ### Step 5: Integrate Now we can integrate each term separately: 1. \(\int \frac{1}{1+t^2} \, dt = \tan^{-1}(t)\) 2. \(\int \frac{1}{t^2} \, dt = -\frac{1}{t}\) Thus, we have: \[ I = \tan^{-1}(t) - \frac{1}{t} + C \] ### Step 6: Substitute Back Now substitute back \(t = \sqrt{1+x^2}\): \[ I = \tan^{-1}(\sqrt{1+x^2}) - \frac{1}{\sqrt{1+x^2}} + C \] ### Final Answer The final result of the integral is: \[ I = \tan^{-1}(\sqrt{1+x^2}) - \frac{1}{\sqrt{1+x^2}} + C \]

To evaluate the integral \[ I = \int \frac{x \, dx}{\sqrt{1+x^2} + \sqrt{(1+x^2)^3}} \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(dx)/(sqrt(1-x^2))

Evaluate: int(xdx)/(sqrt((1+x^2)+sqrt((1+x^2)^3)))

Evaluate: int(dx)/(x^3sqrt(x^2-1))

Evaluate int(dx)/(sqrt(1-x^(2))(1+sqrt(1-x^(2)))) .

Evaluate : int (dx)/( (1 - x^(2)) sqrt( 1 + x^(2)))

Evaluate: int(x+1)sqrt(2x^2+3)dx

Evaluate: int(x+1)sqrt(2x^2+3)dx

Evaluate: int(x-1)/(sqrt(x^2+1))\ dx

Evaluate: int(x+1)/(sqrt(x^2+1))\ dx

Evaluate: int(1+x^2)/(sqrt(1-x^2))\ dx