Home
Class 12
MATHS
Evaluate: int(dx)/(x^2(1+x^5)^(4/5))...

Evaluate: `int(dx)/(x^2(1+x^5)^(4/5))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{dx}{x^2 (1 + x^5)^{4/5}}, \] we will follow a systematic approach. ### Step 1: Rewrite the integral We start with the integral: \[ \int \frac{dx}{x^2 (1 + x^5)^{4/5}}. \] ### Step 2: Substitute \( t = 1 + x^5 \) Let us make the substitution \( t = 1 + x^5 \). Then, we differentiate \( t \) with respect to \( x \): \[ dt = 5x^4 \, dx \implies dx = \frac{dt}{5x^4}. \] ### Step 3: Express \( x^2 \) in terms of \( t \) From the substitution \( t = 1 + x^5 \), we can express \( x^5 \) as \( x^5 = t - 1 \). Therefore, \[ x = (t - 1)^{1/5}. \] Now, we can find \( x^2 \): \[ x^2 = \left((t - 1)^{1/5}\right)^2 = (t - 1)^{2/5}. \] ### Step 4: Substitute \( dx \) and \( x^2 \) into the integral Now we substitute \( dx \) and \( x^2 \) into the integral: \[ \int \frac{1}{(t - 1)^{2/5} (t)^{4/5}} \cdot \frac{dt}{5x^4}. \] Next, we need to express \( x^4 \): \[ x^4 = \left((t - 1)^{1/5}\right)^4 = (t - 1)^{4/5}. \] Thus, \( dx = \frac{dt}{5(t - 1)^{4/5}} \). ### Step 5: Substitute everything into the integral Now substituting everything back into the integral gives us: \[ \int \frac{1}{(t - 1)^{2/5} (t)^{4/5}} \cdot \frac{dt}{5(t - 1)^{4/5}} = \frac{1}{5} \int \frac{dt}{(t - 1)^{6/5} t^{4/5}}. \] ### Step 6: Simplify the integral Now we can simplify the integral: \[ \frac{1}{5} \int (t - 1)^{-6/5} t^{-4/5} \, dt. \] ### Step 7: Use the formula for integration Using the formula for integration of the form \( \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \): \[ = \frac{1}{5} \cdot \frac{(t - 1)^{-1/5}}{-1/5} + C = -\frac{1}{5} (t - 1)^{-1/5} + C. \] ### Step 8: Substitute back \( t = 1 + x^5 \) Now substituting back \( t = 1 + x^5 \): \[ = -\frac{1}{5} (1 + x^5 - 1)^{-1/5} + C = -\frac{1}{5} (x^5)^{-1/5} + C = -\frac{1}{5} \frac{1}{x} + C. \] ### Final Answer Thus, the final answer is: \[ -\frac{1}{5x} + C. \]

To evaluate the integral \[ \int \frac{dx}{x^2 (1 + x^5)^{4/5}}, \] we will follow a systematic approach. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^5)/(x+1)\ dx

Evaluate int(5-x).x^2\dx

Evaluate: int(x+1)/(x^2+4x+5)\ dx

int(dx)/((x+1)^(6/5)(x-3)^(4/5))=

Evaluate: int(x^7)/((1-x^2)^5)\ dx .

Evaluate: (i) int1/(x^2(x^4+1)^(3//4))\ dx (ii) int(sin^5x)/(cos^4x)\ dx

Evaluate : int(dx)/(sqrt(5-4x-2x^2))

Evaluate: int(x^(2)-5x-1)dx

Evaluate: int(2x+5)/(x^2-x-2)\ dx

Evaluate: int1/(x^2+4x-5)\ dx