Home
Class 12
MATHS
Evaluate: int((x^4-x)^(1//4))/(x^5)\ dx...

Evaluate: `int((x^4-x)^(1//4))/(x^5)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{(x^4 - x)^{1/4}}{x^5} \, dx, \] we will follow these steps: ### Step 1: Simplify the integrand We can rewrite the integrand by factoring out \(x^4\) from the expression inside the parentheses: \[ \int \frac{(x^4(1 - \frac{1}{x^3}))^{1/4}}{x^5} \, dx. \] This simplifies to: \[ \int \frac{x^{4/4}(1 - \frac{1}{x^3})^{1/4}}{x^5} \, dx = \int \frac{(1 - \frac{1}{x^3})^{1/4}}{x^{5 - 1}} \, dx = \int (1 - \frac{1}{x^3})^{1/4} \frac{1}{x} \, dx. \] ### Step 2: Substitute Let \[ t = 1 - \frac{1}{x^3}. \] Then, we differentiate \(t\) with respect to \(x\): \[ \frac{dt}{dx} = \frac{3}{x^4} \implies dt = \frac{3}{x^4} \, dx \implies dx = \frac{x^4}{3} \, dt. \] ### Step 3: Express \(x\) in terms of \(t\) From the substitution, we can express \(x^4\) in terms of \(t\): \[ x^4 = \frac{1 - t}{1} \implies x^4 = \frac{1}{1 - t}. \] ### Step 4: Substitute in the integral Now substituting \(dx\) and \(x\) into the integral: \[ \int (1 - \frac{1}{x^3})^{1/4} \frac{1}{x} \cdot \frac{x^4}{3} \, dt = \frac{1}{3} \int t^{1/4} \cdot \frac{1}{x} \cdot x^4 \, dt. \] This simplifies to: \[ \frac{1}{3} \int t^{1/4} \cdot \frac{1}{x^3} \, dt. \] ### Step 5: Substitute back for \(x\) Since \(x^3 = \frac{1}{1 - t}\), we have: \[ \frac{1}{x^3} = 1 - t. \] Thus, the integral becomes: \[ \frac{1}{3} \int t^{1/4} (1 - t) \, dt. \] ### Step 6: Evaluate the integral Now we can evaluate the integral: \[ \frac{1}{3} \int t^{1/4} (1 - t) \, dt = \frac{1}{3} \left( \int t^{1/4} \, dt - \int t^{5/4} \, dt \right). \] Calculating these integrals: \[ \int t^{1/4} \, dt = \frac{t^{5/4}}{5/4} = \frac{4}{5} t^{5/4}, \] \[ \int t^{5/4} \, dt = \frac{t^{9/4}}{9/4} = \frac{4}{9} t^{9/4}. \] Thus, \[ \frac{1}{3} \left( \frac{4}{5} t^{5/4} - \frac{4}{9} t^{9/4} \right) + C. \] ### Step 7: Substitute back for \(t\) Substituting back \(t = 1 - \frac{1}{x^3}\): \[ = \frac{1}{3} \left( \frac{4}{5} \left(1 - \frac{1}{x^3}\right)^{5/4} - \frac{4}{9} \left(1 - \frac{1}{x^3}\right)^{9/4} \right) + C. \] ### Final Result Thus, the final answer is: \[ \frac{4}{15} \left(1 - \frac{1}{x^3}\right)^{5/4} - \frac{4}{27} \left(1 - \frac{1}{x^3}\right)^{9/4} + C. \]

To evaluate the integral \[ \int \frac{(x^4 - x)^{1/4}}{x^5} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.5|9 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.6|6 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.3|16 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int((x^4-x)^(1/4))dx/x^5

Find int((x^4-x)^(1/4))/(x^5)dx

Evaluate: int((x-x^3)^(1/3))/(x^4)dx

Evaluate: int((x-x^3)^(1/3))/(x^4)dx

Evaluate: int1/(x^4-1)dx

Evaluate: int(x^(1//2))/(1+x^(3//4))\ dx

Evaluate: int(x^(1//2))/(1+x^(3//4))\ dx

Evaluate: int1/(x^4+1)dx

Evaluate: int1/(x^4+1)dx

int((x4-x)^(1//4))/(x^(5))dx is equal to