Home
Class 12
MATHS
Evaluate intcos sqrt(x)dx...

Evaluate `intcos sqrt(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \cos(\sqrt{x}) \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \] Differentiating both sides gives: \[ dx = 2t \, dt \] ### Step 2: Rewrite the Integral Substituting \( t \) and \( dx \) into the integral, we get: \[ \int \cos(\sqrt{x}) \, dx = \int \cos(t) \cdot 2t \, dt = 2 \int t \cos(t) \, dt \] ### Step 3: Integration by Parts Now we will use integration by parts. Let: - \( u = t \) (which implies \( du = dt \)) - \( dv = \cos(t) \, dt \) (which implies \( v = \sin(t) \)) Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ 2 \int t \cos(t) \, dt = 2 \left( t \sin(t) - \int \sin(t) \, dt \right) \] ### Step 4: Integrate \( \sin(t) \) The integral of \( \sin(t) \) is: \[ \int \sin(t) \, dt = -\cos(t) \] Thus, we substitute back: \[ 2 \left( t \sin(t) - (-\cos(t)) \right) = 2 \left( t \sin(t) + \cos(t) \right) \] ### Step 5: Substitute Back to Original Variable Now we substitute back \( t = \sqrt{x} \): \[ = 2 \left( \sqrt{x} \sin(\sqrt{x}) + \cos(\sqrt{x}) \right) + C \] ### Final Answer The final result of the integral is: \[ \int \cos(\sqrt{x}) \, dx = 2 \left( \sqrt{x} \sin(\sqrt{x}) + \cos(\sqrt{x}) \right) + C \] ---

To evaluate the integral \( \int \cos(\sqrt{x}) \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \] Differentiating both sides gives: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.8|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int sqrt(x)" dx "

Evaluate: intcos^3sqrt(x)\ \ dx

Evaluate intcos9xdx

Evaluate: int(cossqrt(x))/(sqrt(x))\ dx

Evaluate: int(cossqrt(x))/(sqrt(x))\ dx

Evaluate: intcos^3xsqrt(sinx)dx

Evaluate: intcos2xdx

Evaluate intcos^2xdx

Evaluate: inte^(sqrt(x))\ dx

Evaluate: int(sqrt(x)dx)/(1+x)