Home
Class 12
MATHS
Evaluate: int"t"a n^(-1)sqrt(x)dx...

Evaluate: `int"t"a n^(-1)sqrt(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \tan^{-1}(\sqrt{x}) \, dx \), we will use substitution and integration by parts. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \quad \text{and} \quad dx = 2t \, dt \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we get: \[ \int \tan^{-1}(\sqrt{x}) \, dx = \int \tan^{-1}(t) \cdot 2t \, dt = 2 \int t \tan^{-1}(t) \, dt \] ### Step 3: Integration by Parts Let: - \( u = \tan^{-1}(t) \) (which means \( du = \frac{1}{1+t^2} \, dt \)) - \( dv = t \, dt \) (which means \( v = \frac{t^2}{2} \)) Using integration by parts, \( \int u \, dv = uv - \int v \, du \): \[ \int t \tan^{-1}(t) \, dt = \tan^{-1}(t) \cdot \frac{t^2}{2} - \int \frac{t^2}{2} \cdot \frac{1}{1+t^2} \, dt \] ### Step 4: Simplifying the Integral The integral simplifies to: \[ \int t \tan^{-1}(t) \, dt = \frac{t^2}{2} \tan^{-1}(t) - \frac{1}{2} \int \frac{t^2}{1+t^2} \, dt \] Now, simplify \( \frac{t^2}{1+t^2} \): \[ \frac{t^2}{1+t^2} = 1 - \frac{1}{1+t^2} \] Thus, \[ \int \frac{t^2}{1+t^2} \, dt = \int 1 \, dt - \int \frac{1}{1+t^2} \, dt = t - \tan^{-1}(t) \] ### Step 5: Substitute Back Now substituting back into the integral: \[ \int t \tan^{-1}(t) \, dt = \frac{t^2}{2} \tan^{-1}(t) - \frac{1}{2} \left( t - \tan^{-1}(t) \right) \] This gives us: \[ = \frac{t^2}{2} \tan^{-1}(t) - \frac{t}{2} + \frac{1}{2} \tan^{-1}(t) \] ### Step 6: Combine Terms Combining the terms: \[ = \left( \frac{t^2}{2} + \frac{1}{2} \right) \tan^{-1}(t) - \frac{t}{2} \] ### Step 7: Substitute \( t = \sqrt{x} \) Substituting \( t = \sqrt{x} \) back into the equation: \[ = \left( \frac{x}{2} + \frac{1}{2} \right) \tan^{-1}(\sqrt{x}) - \frac{\sqrt{x}}{2} + C \] ### Final Answer Thus, the final answer is: \[ \int \tan^{-1}(\sqrt{x}) \, dx = \left( \frac{x+1}{2} \right) \tan^{-1}(\sqrt{x}) - \frac{\sqrt{x}}{2} + C \]

To evaluate the integral \( \int \tan^{-1}(\sqrt{x}) \, dx \), we will use substitution and integration by parts. Here’s a step-by-step solution: ### Step 1: Substitution Let \( t = \sqrt{x} \). Then, we have: \[ x = t^2 \quad \text{and} \quad dx = 2t \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.8|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int"tan^(-1)sqrt((1-x)/(1+x))dx

Evaluate: int tan ^(-1) sqrt x dx

Evaluate: int cos^(-1)sqrt(x)dx

Evaluate: int(x-1)/sqrt (x^2-1)dx

Evaluate: int1/((x-1)sqrt(x+1))\ dx

Evaluate: int1/((x-1)sqrt(x+2))\ dx

Evaluate: int(1)/((sqrt(2)+x))dx=

Evaluate: int1/((x+1)sqrt(x))\ dx

Evaluate: (i) int(1-x)sqrt(x)\ dx (ii) int(sqrt(x)+1/(sqrt(x)))^2\ dx

Evaluate: int5^(x+t a n^(-1)x)((x^2+2)/(x^2+1))dx