Home
Class 12
MATHS
int(xsin^-1x)/sqrt(1-x^2)dx...

`int(xsin^-1x)/sqrt(1-x^2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx \), we can use the substitution method. Here is a step-by-step solution: ### Step 1: Substitution Let \( t = \sin^{-1} x \). Then, we differentiate both sides to find \( dx \): \[ \frac{dt}{dx} = \frac{1}{\sqrt{1 - x^2}} \implies dx = \sqrt{1 - x^2} \, dt \] ### Step 2: Express \( x \) in terms of \( t \) From the substitution \( t = \sin^{-1} x \), we can express \( x \) as: \[ x = \sin t \] ### Step 3: Substitute in the integral Now substitute \( x \) and \( dx \) into the integral: \[ \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx = \int \frac{\sin t \cdot t}{\sqrt{1 - \sin^2 t}} \cdot \sqrt{1 - \sin^2 t} \, dt \] Since \( \sqrt{1 - \sin^2 t} = \cos t \), the integral simplifies to: \[ \int t \sin t \, dt \] ### Step 4: Integration by parts We will use integration by parts for \( \int t \sin t \, dt \). Let: - \( u = t \) \(\Rightarrow du = dt\) - \( dv = \sin t \, dt \) \(\Rightarrow v = -\cos t\) Applying integration by parts: \[ \int t \sin t \, dt = uv - \int v \, du = -t \cos t - \int -\cos t \, dt \] \[ = -t \cos t + \int \cos t \, dt \] \[ = -t \cos t + \sin t + C \] ### Step 5: Substitute back for \( t \) Now substitute back \( t = \sin^{-1} x \): \[ = -\sin^{-1} x \cos(\sin^{-1} x) + \sin(\sin^{-1} x) + C \] Since \( \cos(\sin^{-1} x) = \sqrt{1 - x^2} \) and \( \sin(\sin^{-1} x) = x \), we have: \[ = -\sin^{-1} x \sqrt{1 - x^2} + x + C \] ### Final Answer Thus, the integral evaluates to: \[ \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx = -\sin^{-1} x \sqrt{1 - x^2} + x + C \]

To solve the integral \( \int \frac{x \sin^{-1} x}{\sqrt{1 - x^2}} \, dx \), we can use the substitution method. Here is a step-by-step solution: ### Step 1: Substitution Let \( t = \sin^{-1} x \). Then, we differentiate both sides to find \( dx \): \[ \frac{dt}{dx} = \frac{1}{\sqrt{1 - x^2}} \implies dx = \sqrt{1 - x^2} \, dt \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.8|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^(sin^-1x)/sqrt (1-x^2)dx

Find int(xsin^(-1)x)/(sqrt(1-x^2))dx

Find : int(xsin^(-1)x)/(sqrt(1-x^2))dx

Evaluate: int(xsin^(-1)x)/(sqrt(1-x^2))\ dx

Evaluate: int(xsin^(-1)x)/(sqrt(1-x^2))dx

Evaluate: int(xsin^(-1)x)/sqrt(1-x^(2))dx

Evaluate: int_0^(1/2)(xsin^(-1)x)/(sqrt(1-x^2))dx

int_-1^1 (x.sin^-1x)/(sqrt(1-x^2)) dx =2

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

Evaluate: (i) int(xsin^(-1)x^2)/(sqrt(1-x^4))\ dx (ii) intx^3sin(x^4+1)\ dx