Home
Class 12
MATHS
Evaluate: intsin^2(logx)dx...

Evaluate: `intsin^2(logx)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int \sin^2(\log x) \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, we have: \[ x = e^t \quad \text{and} \quad dx = e^t \, dt \] Substituting these into the integral gives: \[ I = \int \sin^2(t) \cdot e^t \, dt \] ### Step 2: Use the identity for \(\sin^2(t)\) We can use the identity: \[ \sin^2(t) = \frac{1 - \cos(2t)}{2} \] Thus, we can rewrite the integral as: \[ I = \int e^t \cdot \frac{1 - \cos(2t)}{2} \, dt = \frac{1}{2} \int e^t \, dt - \frac{1}{2} \int e^t \cos(2t) \, dt \] ### Step 3: Evaluate the first integral The first integral is straightforward: \[ \int e^t \, dt = e^t \] So, \[ \frac{1}{2} \int e^t \, dt = \frac{1}{2} e^t \] ### Step 4: Evaluate the second integral using integration by parts Let: \[ I_1 = \int e^t \cos(2t) \, dt \] Using integration by parts, let \( u = \cos(2t) \) and \( dv = e^t \, dt \). Then: \[ du = -2 \sin(2t) \, dt \quad \text{and} \quad v = e^t \] Thus, we have: \[ I_1 = e^t \cos(2t) - \int e^t (-2 \sin(2t)) \, dt \] This simplifies to: \[ I_1 = e^t \cos(2t) + 2 \int e^t \sin(2t) \, dt \] Let \( I_2 = \int e^t \sin(2t) \, dt \). We will also use integration by parts on \( I_2 \): Let \( u = \sin(2t) \) and \( dv = e^t \, dt \): \[ du = 2 \cos(2t) \, dt \quad \text{and} \quad v = e^t \] Thus, \[ I_2 = e^t \sin(2t) - \int e^t (2 \cos(2t)) \, dt \] This gives: \[ I_2 = e^t \sin(2t) - 2 I_1 \] ### Step 5: Solve the system of equations Now we have two equations: 1. \( I_1 = e^t \cos(2t) + 2 I_2 \) 2. \( I_2 = e^t \sin(2t) - 2 I_1 \) Substituting equation 2 into equation 1: \[ I_1 = e^t \cos(2t) + 2(e^t \sin(2t) - 2 I_1) \] This simplifies to: \[ I_1 + 4 I_1 = e^t \cos(2t) + 2 e^t \sin(2t) \] Thus: \[ 5 I_1 = e^t \cos(2t) + 2 e^t \sin(2t) \] So, \[ I_1 = \frac{1}{5}(e^t \cos(2t) + 2 e^t \sin(2t)) \] ### Step 6: Substitute back to original variable Now substituting back \( t = \log x \): \[ I_1 = \frac{1}{5}(x \cos(2 \log x) + 2x \sin(2 \log x)) \] Thus, our integral becomes: \[ I = \frac{1}{2} e^t - \frac{1}{10}(e^t \cos(2t) + 2 e^t \sin(2t)) + C \] Substituting back \( e^t = x \): \[ I = \frac{x}{2} - \frac{1}{10}(x \cos(2 \log x) + 2x \sin(2 \log x)) + C \] ### Final Answer \[ I = \frac{x}{2} - \frac{1}{10} x \cos(2 \log x) + \frac{1}{5} x \sin(2 \log x) + C \]

To evaluate the integral \( I = \int \sin^2(\log x) \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, we have: \[ x = e^t \quad \text{and} \quad dx = e^t \, dt \] Substituting these into the integral gives: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.8|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intsin(logx)\ dx

intsin^2(x+1) dx

Evaluate int sin(logx)dx .

intsin^2(2x+5)dx

intsin(logx)/x^3dx

Evaluate intsin^2xdx

intsin^3(3+2logx)/xdx

Evaluate: intcos(logx)\ dx

Evaluate: intsin^2xcos^2x dx

Evaluate: int[sin(logx)+cos(logx)]dx