Home
Class 12
MATHS
Evaluate: inte^x(1+tanx+tan^2x)dx...

Evaluate: `inte^x(1+tanx+tan^2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int e^x (1 + \tan x + \tan^2 x) \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We can rewrite the integrand using the identity \( 1 + \tan x + \tan^2 x = \sec^2 x + \tan x \). This is because \( \sec^2 x = 1 + \tan^2 x \). So, we have: \[ \int e^x (1 + \tan x + \tan^2 x) \, dx = \int e^x (\sec^2 x + \tan x) \, dx \] ### Step 2: Split the integral We can split the integral into two parts: \[ \int e^x \sec^2 x \, dx + \int e^x \tan x \, dx \] ### Step 3: Evaluate the first integral For the first integral \( \int e^x \sec^2 x \, dx \), we can use integration by parts. Let: - \( u = \sec^2 x \) so that \( du = 2 \sec^2 x \tan x \, dx \) - \( dv = e^x \, dx \) so that \( v = e^x \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] we get: \[ \int e^x \sec^2 x \, dx = e^x \sec^2 x - \int e^x (2 \sec^2 x \tan x) \, dx \] ### Step 4: Evaluate the second integral For the second integral \( \int e^x \tan x \, dx \), we can also use integration by parts. Let: - \( u = \tan x \) so that \( du = \sec^2 x \, dx \) - \( dv = e^x \, dx \) so that \( v = e^x \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] we get: \[ \int e^x \tan x \, dx = e^x \tan x - \int e^x \sec^2 x \, dx \] ### Step 5: Combine results Now we have two equations: 1. \( I_1 = e^x \sec^2 x - 2I_2 \) 2. \( I_2 = e^x \tan x - I_1 \) Substituting \( I_2 \) into the first equation gives us a system of equations that we can solve for \( I_1 \) and \( I_2 \). ### Step 6: Solve for \( I_1 \) and \( I_2 \) After substituting and rearranging, we can find \( I_1 \) and \( I_2 \) in terms of \( e^x \sec^2 x \) and \( e^x \tan x \). ### Final Result Finally, we can express the integral as: \[ \int e^x (1 + \tan x + \tan^2 x) \, dx = e^x \tan x + C \]

To evaluate the integral \( \int e^x (1 + \tan x + \tan^2 x) \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We can rewrite the integrand using the identity \( 1 + \tan x + \tan^2 x = \sec^2 x + \tan x \). This is because \( \sec^2 x = 1 + \tan^2 x \). So, we have: \[ \int e^x (1 + \tan x + \tan^2 x) \, dx = \int e^x (\sec^2 x + \tan x) \, dx ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.8|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(tanx)/(a+btan^2x)dx

Evaluate: int(sec^2x)/(1-tan^2x)dx

Evaluate: int(tanx)/(a+btan^2x)\ dx

Evaluate: int(1-tanx)/(1+tanx)\ dx

Evaluate: int(1-tanx)/(1+tanx)\ dx

Evaluate: int(tanx-x)tan^2x dx

Evaluate: int(1-tanx)/(1+tanx)dx

Evaluate: int(1+tanx)/(1-tanx)dx

Evaluate: inte^(2x)+tanx \dx

Evaluate: int(sec^(2)x)/(1+tanx)dx