Home
Class 12
MATHS
Evaluate int((log x-1)/(1+(logx)^(2)))^...

Evaluate `int((log x-1)/(1+(logx)^(2)))^(2)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \left( \frac{\log x - 1}{1 + (\log x)^2} \right)^2 dx, \] we will follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, we have: \[ x = e^t \quad \text{and} \quad dx = e^t dt. \] ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we get: \[ \int \left( \frac{t - 1}{1 + t^2} \right)^2 e^t dt. \] ### Step 3: Expand the Numerator Now, we will expand the numerator: \[ \left( \frac{t - 1}{1 + t^2} \right)^2 = \frac{(t - 1)^2}{(1 + t^2)^2} = \frac{t^2 - 2t + 1}{(1 + t^2)^2}. \] ### Step 4: Substitute Back into the Integral Thus, the integral becomes: \[ \int \frac{(t^2 - 2t + 1)e^t}{(1 + t^2)^2} dt. \] ### Step 5: Separate the Integral We can separate this into three integrals: \[ \int \frac{t^2 e^t}{(1 + t^2)^2} dt - 2 \int \frac{t e^t}{(1 + t^2)^2} dt + \int \frac{e^t}{(1 + t^2)^2} dt. \] ### Step 6: Integration by Parts For the second integral, we can use integration by parts. Let: - \( u = \frac{1}{1 + t^2} \) and \( dv = e^t dt \). Then, we have: - \( du = -\frac{2t}{(1 + t^2)^2} dt \) and \( v = e^t \). Applying integration by parts: \[ \int u dv = uv - \int v du. \] ### Step 7: Combine Results After performing the integration for each part, we will combine the results. ### Step 8: Substitute Back Finally, we substitute \( t = \log x \) back into our result to express the answer in terms of \( x \). ### Final Answer The final answer will be: \[ \frac{x}{1 + (\log x)^2} + C, \] where \( C \) is the constant of integration. ---

To evaluate the integral \[ \int \left( \frac{\log x - 1}{1 + (\log x)^2} \right)^2 dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.8|7 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evalaute: int((logx-1)/(1+(logx)^2))^2dx

Evaluate: int(log(logx)+1/((logx)^2))dx

Evaluate: int(log(logx)+1/((logx)^2))dx

Evaluate int(logx)/((1+logx)^(2))dx .

Evaluate: int(logx)/((1+logx)^2)dx

Evaluate int((x+1)/(x))(x+logx)^(2)dx

Evaluate: int{1/(logx)-1/((logx)^2)}\ dx

Evaluate: int{1/(logx)-1/((logx)^2)}\ dx

Evaluate: int(logx^2)/(x)dx

Evaluate : int [ log (log x) +(1)/((log x)^(2)) ] dx