Home
Class 12
MATHS
"If " int sinx d(secx)=f(x)-g(x)+c, then...

`"If " int sinx d(secx)=f(x)-g(x)+c,` then

A

`f(x)=secx`

B

`f(x)=tanx`

C

`g(x)=2x`

D

`g(x)=x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin x \, d(\sec x) = f(x) - g(x) + c \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \sin x \, d(\sec x) \] To proceed, we multiply and divide by \( dx \): \[ I = \int \sin x \, \frac{d(\sec x)}{dx} \, dx \] ### Step 2: Differentiate \( \sec x \) The derivative of \( \sec x \) is: \[ \frac{d}{dx}(\sec x) = \sec x \tan x \] Thus, we can rewrite the integral as: \[ I = \int \sin x \cdot \sec x \tan x \, dx \] ### Step 3: Rewrite \( \sin x \) in Terms of \( \tan x \) We know that: \[ \sin x = \frac{\tan x}{\sqrt{1 + \tan^2 x}} = \frac{\tan x}{\sec x} \] Substituting this into the integral gives: \[ I = \int \frac{\tan x}{\sec x} \cdot \sec x \tan x \, dx = \int \tan^2 x \, dx \] ### Step 4: Use the Identity for \( \tan^2 x \) Using the identity: \[ \tan^2 x = \sec^2 x - 1 \] We can rewrite the integral: \[ I = \int (\sec^2 x - 1) \, dx \] ### Step 5: Integrate Now we can integrate: \[ I = \int \sec^2 x \, dx - \int 1 \, dx \] The integral of \( \sec^2 x \) is \( \tan x \) and the integral of \( 1 \) is \( x \): \[ I = \tan x - x + C \] ### Step 6: Identify \( f(x) \) and \( g(x) \) From our result, we can identify: \[ f(x) = \tan x \quad \text{and} \quad g(x) = x \] ### Final Answer Thus, the final answer is: \[ \int \sin x \, d(\sec x) = \tan x - x + C \]

To solve the integral \( \int \sin x \, d(\sec x) = f(x) - g(x) + c \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \sin x \, d(\sec x) \] To proceed, we multiply and divide by \( dx \): ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If intsinx d(secx)=f(x)-g(x)+c ,t h e n f(x)=secx (b) f(x)=tanx g(x)=2x (d) g(x)=x

int(dx)/(sinx+secx)

If f(x)=secx, then

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If int(sinx)/(sin(x-a))dx=f(x)sina+g(x)cosa+c , then

Let int x sinx sec^3x dx = 1/2(x.f(x) - g(x)) + k , then

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

"If " int sqrt(1+sinx) f(x)dx=(2)/(3)(1+sinx)^(3//2)+c, " then " f(x) " equals "

Let d/(dx) (F(x))= e^(sinx)/x, x>0 . If int_1^4 2e^sin(x^2)/x dx = F(k)-F(1) , then possible value of k is:

If int(sinx)/(1+sinx)dx=(A)/(798)secx-tanx+x+C then A equals………..