Home
Class 12
MATHS
intsqrt(1+cos e cx)dx e q u a l s 2sin^...

`intsqrt(1+cos e cx)dx e q u a l s` `2sin^(-1)sqrt(sinx)+c` (b) `sqrt(2)cos^(-1)sqrt(cosx)+c` `c-2sin^(-1)(1-2sinx)` `cos^(-1)(1-2sinx)+c`

A

`2sin^(-1)sqrt(sinx)+c`

B

`sqrt(2)cos^(-1)sqrt(cosx)+c`

C

`c-2sin^(-1)(1-2sinx)`

D

`cos^(-1)(1-2sinx)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \(\int \sqrt{1 + \cos x} \, dx\), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \sqrt{1 + \cos x} \, dx \] Using the identity \(1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right)\), we can rewrite the integral: \[ \int \sqrt{2 \cos^2\left(\frac{x}{2}\right)} \, dx = \int \sqrt{2} \cos\left(\frac{x}{2}\right) \, dx \] ### Step 2: Factor Out the Constant We can factor out the constant \(\sqrt{2}\): \[ \sqrt{2} \int \cos\left(\frac{x}{2}\right) \, dx \] ### Step 3: Perform the Integration To integrate \(\cos\left(\frac{x}{2}\right)\), we use the substitution \(u = \frac{x}{2}\), which gives \(du = \frac{1}{2} dx\) or \(dx = 2 du\): \[ \sqrt{2} \int \cos(u) \cdot 2 \, du = 2\sqrt{2} \int \cos(u) \, du \] The integral of \(\cos(u)\) is \(\sin(u)\): \[ 2\sqrt{2} \sin(u) + C \] ### Step 4: Substitute Back Now we substitute back \(u = \frac{x}{2}\): \[ 2\sqrt{2} \sin\left(\frac{x}{2}\right) + C \] ### Step 5: Final Simplification We can express \(\sin\left(\frac{x}{2}\right)\) in terms of \(\sqrt{\sin x}\) using the double angle identity: \[ \sin\left(\frac{x}{2}\right) = \sqrt{\sin x} \] Thus, our final answer becomes: \[ 2 \sin^{-1}(\sqrt{\sin x}) + C \] ### Conclusion The final result of the integral is: \[ \int \sqrt{1 + \cos x} \, dx = 2 \sin^{-1}(\sqrt{\sin x}) + C \]

To solve the integral \(\int \sqrt{1 + \cos x} \, dx\), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ \int \sqrt{1 + \cos x} \, dx \] Using the identity \(1 + \cos x = 2 \cos^2\left(\frac{x}{2}\right)\), we can rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int sinx sqrt(1-cos 2x) dx

The value of intsqrt(1+secx)dx is equal to (A) 2sin^-1(sqrt(2)sin(x/2))+c (B) 2cos^-1(sqrt(2)sin(x/2))+c (C) 2sin^-1(sqrt(2)cos(x/2))+c (D) none of these

intsqrt(x/(1-x))\ dx is equal to (a) sin^(-1)sqrt(x)+C (b) sin^(-1){sqrt(x)-sqrt(x(1-x))}+C (c) sin^(-1){sqrt(x(1-x))}+C (d) sin^(-1)sqrt(x)-sqrt(x(1-x))+C

Find the sum cos e c^(-1)sqrt(10)+cos e c^(-1)sqrt(50)+cos e c^(-1)sqrt(170)++cos e c^(-1)sqrt((n^2+1)(n^2+2n+2))

For the principal values, evaluate the following: sin^(-1)(-(sqrt(3))/2)+cos e c^(-1)(-2/(sqrt(3))) sec^(-1)(sqrt(2))+2cos e c^(-1)(-sqrt(2)) sin^(-1)[cos{2cos e c^(-1)(-2)}] cos e c^(-1)(2tan(11pi)/6)

For the principal values, evaluate the following: sin^(-1)(-(sqrt(3))/2)+cos e c^(-1)(-2/(sqrt(3))) sec^(-1)(sqrt(2))+2cos e c^(-1)(-sqrt(2)) sin^(-1)[cos{2cos e c^(-1)(-2)}] cos e c^(-1)(2tan(11pi)/6)

int (sinx+cosx)/sqrt(1+sin2x)dx .

Evaluate: (i) sqrt(1-cos2x)\ dx (ii) intsqrt(1+sin2x)\ dx

int(e^(-x/2)sqrt(1-sinx))/(1+cosx)dx

If tanx=b/a , then sqrt((a+b)/(a-b))+sqrt((a-b)/(a+b)) is equal to (a) 2sinx//sqrt(sin2x) (b) 2cosx//sqrt(cos2x) (c) 2cosx//sqrt(sin2x) (d) 2sinx//sqrt(cos2x)