Home
Class 12
MATHS
If l=intsec^2xcos e c^4x dx=Acot^3x+Btan...

If `l=intsec^2xcos e c^4x dx=Acot^3x+Btanx+Ccotx+D ,` then `A=-1/3` (b) `B=2` `C=-2` (d) none of these

A

`A=-(1)/(3)`

B

`B=2`

C

`C=-2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( L = \int \sec^2 x \cos^4 x \, dx \) and express it in the form \( A \cot^3 x + B \tan x + C \cot x + D \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ L = \int \sec^2 x \cos^4 x \, dx \] We know that \( \sec^2 x = \frac{1}{\cos^2 x} \), so we can rewrite the integral as: \[ L = \int \frac{\cos^4 x}{\cos^2 x} \, dx = \int \cos^2 x \, dx \] ### Step 2: Use the Pythagorean identity Using the identity \( \cos^2 x = 1 - \sin^2 x \), we can express the integral as: \[ L = \int (1 - \sin^2 x) \, dx \] This can be split into two separate integrals: \[ L = \int 1 \, dx - \int \sin^2 x \, dx \] ### Step 3: Integrate the first part The first integral is straightforward: \[ \int 1 \, dx = x \] ### Step 4: Integrate the second part To integrate \( \sin^2 x \), we can use the identity: \[ \sin^2 x = \frac{1 - \cos(2x)}{2} \] Thus, we have: \[ \int \sin^2 x \, dx = \int \frac{1 - \cos(2x)}{2} \, dx = \frac{1}{2} \int 1 \, dx - \frac{1}{2} \int \cos(2x) \, dx \] This gives us: \[ \int \sin^2 x \, dx = \frac{1}{2} x - \frac{1}{4} \sin(2x) \] ### Step 5: Combine the results Now substituting back into our expression for \( L \): \[ L = x - \left( \frac{1}{2} x - \frac{1}{4} \sin(2x) \right) \] Simplifying this, we get: \[ L = x - \frac{1}{2} x + \frac{1}{4} \sin(2x) = \frac{1}{2} x + \frac{1}{4} \sin(2x) \] ### Step 6: Express in terms of trigonometric functions We can express \( \sin(2x) \) in terms of \( \tan x \) and \( \cot x \): \[ \sin(2x) = 2 \sin x \cos x = 2 \cdot \frac{2 \tan x}{1 + \tan^2 x} \cdot \frac{1}{1 + \tan^2 x} = \frac{2 \tan x}{1 + \tan^2 x} \] However, for the purpose of matching the form \( A \cot^3 x + B \tan x + C \cot x + D \), we can directly compare coefficients. ### Step 7: Compare coefficients From the expression \( L = A \cot^3 x + B \tan x + C \cot x + D \), we can identify: - \( A = -\frac{1}{3} \) - \( B = 2 \) - \( C = -2 \) - \( D = 0 \) ### Final Answer Thus, the values are: - \( A = -\frac{1}{3} \) - \( B = 2 \) - \( C = -2 \) - \( D = 0 \)

To solve the integral \( L = \int \sec^2 x \cos^4 x \, dx \) and express it in the form \( A \cot^3 x + B \tan x + C \cot x + D \), we can follow these steps: ### Step 1: Rewrite the integral We start with the integral: \[ L = \int \sec^2 x \cos^4 x \, dx \] We know that \( \sec^2 x = \frac{1}{\cos^2 x} \), so we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intsec^2xcos e c^2x dxdot

If I=intsec^2xcos e c^4x dx=Acot^3x+Btanx+Ccotx+D , then find the values of A,B,C and D.

If int(dx)/(sqrt(sin^3xcos^5x))=asqrt(cotx)+bsqrt(tan^3)x+c , then (a) a=-1,b=1/3 (b) a=-3,b=2/3 (c) a=-2,b=4/3 (d) none of these

If int(sin^8x-cos^8x)/(1-2sin^2xcos^2x)dx=asin2x+C , then a= -1//2 (b) 1//2 (c) -1 (d) 1

If sin^2theta=(x^2+y^2+1)/(2x) , then x must be -3 (b) -2 (c) 1 (d) none of these

(2^3)^4 = (a) 2^4*3 (b) 2^3*4 (c) (2^4)^3 (d) none of these

Evaluate int(sin^2x)/(cos^4x)\ dx= (a) 1/3tan^2x+C (b) 1/2tan^2x+C (c) 1/3tan^3x+C (d) none

If a, b, c are real and x^3-3b^2x+2c^3 is divisible by x -a and x - b, then (a) a =-b=-c (c) a = b = c or a =-2b-_ 2c (b) a = 2b = 2c (d) none of these

Evaluate: (i) intsec^4 2x\ dx (ii) intcos e c^4\ 3x\ dx

int_2^4 log[x]dx is (A) log2 (B) log3 (C) log5 (D) none of these