Home
Class 12
MATHS
A curve g(x)=intx^(27)(1+x+x^2)^6(6x^2+5...

A curve `g(x)=intx^(27)(1+x+x^2)^6(6x^2+5x+4)dx` is passing through origin. Then
(a)`g(1)=(3^7)/7` (b) `g(1)=(2^7)/7` `g(-1)=1/7` (d) `g(-1)=(3^7)/(14)`

A

`g(1)=(3^(7))/(7)`

B

`g(1)=(2^(7))/(7)`

C

`g(-1)=(1)/(7)`

D

`g(-1)=(3^(7))/(14)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

`g(x)=int x^(27)(1+x+x^(2))^(6)(6x^(2)+5x+4)dx`
`=int(x^(4)+x^(5)+x^(6))^(6)(6x^(5)+5x^(4)+4x^(3))dx `
`"Let " x^(6)+x^(5)+x^(4)=t " or "(6x^(5)+5x^(4)+4x^(3))dx=dt `
` :. g(x)=int t^(6)dt=(t^(7))/(7)+C=(1)/(7)(x^(4)+x^(5)+x^(6))^(7)+C `
`g(0)=0 impliesC=0 impliesg(1)=(3^(7))/(7) " and " g(-1)=(1)/(7)`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

A curve g(x)=intx^(27)(1+x+x^2)^6(6x^2+5x+4)dx is passing through origin. Then (a) g(1)=(3^7)/7 (b) g(1)=(2^7)/7 (c) g(-1)=1/7 (d) g(-1)=(3^7)/(14)

If g(x)=(2x+3)^(2) , then g((x)/(3)-1)=

A point on the line (x-1)/1=(y-2)/2=(z+1)/3 at a distance sqrt(6) from the origin is (A) ((-5)/7, (-10)/7,13/7) (B) (5/7,10/7,(-13)/7) (C) (1,2,-1) (D) (-1,-2,1)

int(x^(7m)+x^(2m)+x^m)(2x^(6m)+7x^m+14)^(1/m)dx

(x^3+1/x^3)+(x^2+1/x^2)-6(x+1/x)-7=0

int(5x^8+7x^6)/(x^2+1+2x^7)^2dx is equal to (a) x/(x^2+1+2x^7)+C (b) x^7/(x^2+1+2x^7)+C (c) x^6/(x^2+1+2x^7)+C (d) x^2/(x^2+1+2x^7)+C

f(x)=x^3-6x^2-19 x+84 ,\ g(x)=x-7 find the value of f(x)-g(x).

Solve : (6x+1)/(2)+1=(7x-3)/(3)

Evaluate: ∫(dx)/[(x+2)^(8)(x-1)^(6)]^(1//7)