Home
Class 12
MATHS
If int (sqrtx)^5/((sqrtx)^7+x^6) dx= alo...

If `int (sqrtx)^5/((sqrtx)^7+x^6) dx= alog(x^k/(1+x^k))+c` then `a` and `k` are

A

`k=-2, f(x)=cot^(-1)x, g(x)=sqrt("cosec"x-1)`

B

`k=-2, f(x)=tan^(-1)x, g(x)=sqrt("cosec"x-1)`

C

`k=2, f(x)=tan^(-1)x, g(x)=(cotx)/(sqrt("cosec"x-1))`

D

`k=2, f(x)=cot^(-1)x, g(x)=(cotx)/(sqrt("cosec"x+1))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{(\sqrt{x})^5}{(\sqrt{x})^7 + x^6} \, dx, \] we will follow these steps: ### Step 1: Rewrite the integral First, rewrite the integral in terms of powers of \(x\): \[ \int \frac{x^{5/2}}{x^{7/2} + x^6} \, dx. \] ### Step 2: Factor out \(x^6\) from the denominator Next, factor \(x^6\) out of the denominator: \[ \int \frac{x^{5/2}}{x^{6}(x^{-1/2} + 1)} \, dx = \int \frac{x^{5/2}}{x^6} \cdot \frac{1}{x^{-1/2} + 1} \, dx. \] This simplifies to: \[ \int \frac{x^{5/2}}{x^6} \cdot \frac{1}{x^{-1/2} + 1} \, dx = \int \frac{1}{x^{7/2}(1 + x^{1/2})} \, dx. \] ### Step 3: Substitute \(u = x^{1/2}\) Let \(u = \sqrt{x}\), then \(x = u^2\) and \(dx = 2u \, du\). Substitute these into the integral: \[ \int \frac{1}{(u^2)^{7/2}(1 + u)} \cdot 2u \, du = 2 \int \frac{u}{u^7(1 + u)} \, du = 2 \int \frac{1}{u^6(1 + u)} \, du. \] ### Step 4: Simplify the integral Now, we can rewrite the integral: \[ 2 \int \frac{1}{u^6(1 + u)} \, du. \] ### Step 5: Use partial fraction decomposition We can use partial fraction decomposition on \(\frac{1}{u^6(1 + u)}\): \[ \frac{1}{u^6(1 + u)} = \frac{A}{u} + \frac{B}{u^2} + \frac{C}{u^3} + \frac{D}{u^4} + \frac{E}{u^5} + \frac{F}{u^6} + \frac{G}{1 + u}. \] ### Step 6: Integrate each term Integrate each term separately. The integral of \(\frac{1}{u^n}\) is \(-\frac{1}{(n-1)u^{n-1}}\) and the integral of \(\frac{1}{1 + u}\) is \(\ln(1 + u)\). ### Step 7: Combine results and substitute back After integrating, combine the results and substitute back \(u = \sqrt{x}\) to express the final result in terms of \(x\). ### Step 8: Compare with the given form The final expression will be of the form: \[ a \ln\left(\frac{x^k}{1 + x^k}\right) + C. \] ### Conclusion From the comparison, we find that \(a = \frac{2}{5}\) and \(k = \frac{5}{2}\). ### Final Answer: Thus, the values of \(a\) and \(k\) are: \[ a = \frac{2}{5}, \quad k = \frac{5}{2}. \]

To solve the integral \[ \int \frac{(\sqrt{x})^5}{(\sqrt{x})^7 + x^6} \, dx, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int (1/sqrtx-sqrtx)dx

int (a^sqrtx)/(sqrtx) dx equals

int e^(sqrtx) dx

int((sqrt(x))^5dx)/((sqrt(x))^7+x^6)=lambdalog((x^a)/(x^a+1))+c, then a+lambda

int (1+x)^3/sqrtx dx

Find int sqrtx/sqrt(a^3-x^3) dx

"int5sqrtx dx

int(1+sqrtx)/(1+x)dx

Evaluate int (1)/(x-sqrtx) dx

If int (2^(x))/(sqrt(1-4^(x))) dx = k sin ^(-1) (f(x)) + C then :