Home
Class 12
MATHS
If I=int(sinx+sin^3x)/(cos2x)dx=Pcosx+Ql...

If `I=int(sinx+sin^3x)/(cos2x)dx=Pcosx+Qlog|f(x)|+R ,` then `P=1/2,Q=-3/(4sqrt(2))` (b) `P=1/4, Q=1/(sqrt(2))` `f(x)=(sqrt(2)cosx+1)/(sqrt(2)cosx-1)` (d) `f(x)=(sqrt(2)cosx-1)/(sqrt(2)cosx+1)`

A

`P=1//2,Q= -(3)/(4sqrt(2))`

B

`P=1//4,Q= -(1)/(sqrt(2))`

C

`f(x)=(sqrt(2)cosx+1)/(sqrt(2)cosx-1)`

D

`f(x)=(sqrt(2)cosx-1)/(sqrt(2)cosx+1)`

Text Solution

Verified by Experts

The correct Answer is:
A, C

Let `cosx=t " so "cos2x=2t^(2)-1 and dt= -sinx dx.` Thus,
`I=int(t^(2)-2)/(2t^(2)-1)dt`
`=(1)/(2)int(2t^(2)-4)/(2t^(2)-1)dt`
`=(1)/(2)int dt-(3)/(2)int(dt)/(2t^(2)-1)`
`=(1)/(2)t-(3)/(2sqrt(2))xx(1)/(2)log|(sqrt(2)t-1)/(sqrt(2)t+1)|+C`
`=(1)/(2)cosx-(3)/(4sqrt(2)) log|(sqrt(2)cosx-1)/(sqrt(2)cosx+1)|+C`
So, `P=1//2,Q=-(3)/(4sqrt(2)), f(x)=(sqrt(2)cosx-1)/(sqrt(2)cosx+1)`
`or P=1//2,Q=(3)/(4sqrt(2)),f(x)=(sqrt(2)cosx+1)/(sqrt(2)cosx-1)`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If I=int(sinx+sin^3x)/(cos2x)dx=Pcosx+Qlog|f(x)|+R , then (a) P=1/2,Q=-3/(4sqrt(2)) (b) P=1/4, Q=1/(sqrt(2)) (c) f(x)=(sqrt(2)cosx+1)/(sqrt(2)cosx-1) (d) f(x)=(sqrt(2)cosx-1)/(sqrt(2)cosx+1)

int (sinx+cosx)/sqrt(1+sin2x)dx .

int(sinx+cosx)/(sqrt(1+sin2x))dx

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

Prove that: (i)tan^(-1){(sqrt(1+cosx)+sqrt(1-cosx))/(sqrt(1+cosx)-sqrt(1-cosx))}=pi/4+x/2 ,

int(e^(-x/2)sqrt(1-sinx))/(1+cosx)dx

The domain of f(x)=1/(sqrt(|cosx|+cosx)) is

int(sinx)/(3+4cos^2x)\ dx a. log(3+4cos^2x)+C (b) 1/(2sqrt(3))tan^(-1)((cosx)/(sqrt(3)))+C (c) -1/(2sqrt(3))tan^(-1)((2"\ cos"x)/(sqrt(3)))+C (d) 1/(2sqrt(3))tan^(-1)((2"\ cos"x)/(sqrt(3)))+C

lim_(x->0)(2 7^x-9^x-3^x+1)/(sqrt(2)-sqrt(1+cosx))

Evaluate: (i) int1/(sqrt(1-cos2x))\ dx (ii) int1/(sqrt(1+cosx))\ dx