Home
Class 12
MATHS
If int x^2e^(-2x)= e^(-2x)(ax^2+bx+c)+d ...

If `int x^2e^(-2x)= e^(-2x)(ax^2+bx+c)+d` then

A

`a= -(1)/(2)`

B

`b =(1)/(2)`

C

`c= -(1)/(4)`

D

`d in R`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^2 e^{-2x} \, dx \) and express it in the form \( e^{-2x}(ax^2 + bx + c) + d \), we will use the method of integration by parts. ### Step 1: Set up for integration by parts We will choose: - \( u = x^2 \) (which we will differentiate) - \( dv = e^{-2x} \, dx \) (which we will integrate) ### Step 2: Differentiate and integrate Now we differentiate \( u \) and integrate \( dv \): - \( du = 2x \, dx \) - \( v = \int e^{-2x} \, dx = -\frac{1}{2} e^{-2x} \) ### Step 3: Apply integration by parts Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ \int x^2 e^{-2x} \, dx = uv - \int v \, du \] Substituting the values we found: \[ = x^2 \left(-\frac{1}{2} e^{-2x}\right) - \int \left(-\frac{1}{2} e^{-2x}\right)(2x) \, dx \] This simplifies to: \[ = -\frac{1}{2} x^2 e^{-2x} + \int x e^{-2x} \, dx \] ### Step 4: Solve the remaining integral \( \int x e^{-2x} \, dx \) We will apply integration by parts again on \( \int x e^{-2x} \, dx \): - Let \( u = x \) and \( dv = e^{-2x} \, dx \) - Then \( du = dx \) and \( v = -\frac{1}{2} e^{-2x} \) Applying integration by parts: \[ \int x e^{-2x} \, dx = uv - \int v \, du \] Substituting the values: \[ = x \left(-\frac{1}{2} e^{-2x}\right) - \int \left(-\frac{1}{2} e^{-2x}\right) \, dx \] This simplifies to: \[ = -\frac{1}{2} x e^{-2x} + \frac{1}{4} e^{-2x} \] ### Step 5: Combine results Now we substitute back into our original equation: \[ \int x^2 e^{-2x} \, dx = -\frac{1}{2} x^2 e^{-2x} - \frac{1}{2} x e^{-2x} + \frac{1}{4} e^{-2x} + C \] Factoring out \( e^{-2x} \): \[ = e^{-2x} \left(-\frac{1}{2} x^2 - \frac{1}{2} x + \frac{1}{4}\right) + C \] ### Step 6: Identify coefficients Now we can compare this with the given form \( e^{-2x}(ax^2 + bx + c) + d \): - \( a = -\frac{1}{2} \) - \( b = -\frac{1}{2} \) - \( c = \frac{1}{4} \) - \( d = C \) (a constant) ### Final Answer Thus, the values of \( a \), \( b \), and \( c \) are: - \( a = -\frac{1}{2} \) - \( b = -\frac{1}{2} \) - \( c = \frac{1}{4} \)

To solve the integral \( \int x^2 e^{-2x} \, dx \) and express it in the form \( e^{-2x}(ax^2 + bx + c) + d \), we will use the method of integration by parts. ### Step 1: Set up for integration by parts We will choose: - \( u = x^2 \) (which we will differentiate) - \( dv = e^{-2x} \, dx \) (which we will integrate) ### Step 2: Differentiate and integrate ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int x.e^(2x)dx

int e^(2x)dx

int (2x^(2) +e^(x))dx

If inte^(ax)cosbx dx=(e^(2x))/(29)f(x)+C , then f'' (x)=

If int x^(5)e^(-x^(2))dx = g(x)e^(-x^(2))+C , where C is a constant of integration, then g(-1) is equal to

int(x e^(2x))/((1+2x)^2)dx

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

int (e^x)/e^(2x-4) dx

int_(0)^(1)e^(2x)e^(e^(x) dx =)

int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to