Home
Class 12
MATHS
Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3t...

`Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3tan^(-1)g(x)+C ,t h e n` both `f(x)a n dg(x)` are odd functions `f(x)` is monotonic function `f(x)=g(x)` has no real roots `int(f(x))/(g(x))dx=-1/x+3/(x^3)+c`

A

both `f(x)` and `g(x)` are odd functions

B

`f(x)` is one-one function

C

`f(x)=g(x)` has no real roots

D

`int (f(x))/(g(x))dx=(1)/(x)+(3)/(x^(3))+c`

Text Solution

Verified by Experts

The correct Answer is:
A, C, D

Let `I=int((x^(4)+1))/((x^(6)+1))dt=int((x^(2)+1)^(2)-2x^(2))/((x^(2)+1)(x^(4)-x^(2)+1))dx`
`=int((x^(2)+1)dx)/((x^(4)-x^(2)+1))-2 int (x^(2)dx)/((x^(6)+1))`
`=int((1+(1)/(x^(2)))dx)/((x^(2)-1+(1)/(x^(2))))-2 int (x^(2)dx)/((x^(3))^(2)+1)`
In the first integral, put `x-(1)/(x)=t," i.e., " (1+(1)/(x^(2)))dx=dt`
and in the second integral put `x^(3) =u, " i.e., " x^(2)dx=(du)/(3)`
Then ` I=int (dt)/(1+t^(2))-(2)/(3)int(du)/(1+u^(2))=tan^(-1) t-(2)/(3)tan^(-1)u +C`
`=tan^(-1)(x-(1)/(x))-(2)/(3)tan^(-1)(x^(3))+C`
Here, `f(x)=x-(1)/(x) and g(x)=x^(3)`
Draw the graphs of `f(x) and g(x)` .
We find that `f(x)` is many-one and `f(x)=g(x)` has no real roots.
`int(f(x))/(g(x))dx=int(x-(1)/(x))/(x^(3))dx=int((1)/(x^(2))-(1)/(x^(4)))dx= -(1)/(x)+(3)/(x^(3))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If int(dx)/(x^(2)+ax+1)=f(g(x))+c, then

If int(dx)/(x^2+a x+1)=f(g(x))+c , then f(x) is inverse trigonometric function for |a|>2 f(x) is logarithmic function for |a| 2 g(x) is rational function for |a|<2

int(x+1)/(x(1+x e^x)^2)dx=log|1-f(x)|+f(x)+c , then f(x)=

Let f(x)=tanxa n dg(f(x))=f(x-pi/4), where f(x)a n dg(x) are real valued functions. Prove that f(g(x))="tan ((x-1)/(x+1))dot

If f(x)a n dg(x) are two differentiable functions, show that f(x)g(x) is also differentiable such that d/(dx)[f(x)g(x)]=f(x)d/(dx){g(x)}+g(x)d/(dx){f(x)}

If f(x) and g(x) are two real functions such that f(x)+g(x)=e^(x) and f(x)-g(x)=e^(-x) , then

Let f(x) = tan^-1 (g(x)) , where g (x) is monotonically increasing for 0 < x < pi/2.

If f(x)=(x+1)/(x-1)a n dg(x)=1/(x-2),t h e n discuss the continuity of f(x),g(x),a n dfog(x)dot

If function f(x)=x^(2)+e^(x//2) " and " g(x)=f^(-1)(x) , then the value of g'(1) is

If int(x^2-x+1)/((x^2+1)^(3/2))e^x dx=e^xf(x)+c , then (a) f(x) is an even function (b) f(x) is a bounded function (c) the range of f(x) is (0,1) (d) f(x) has two points of extrema