Home
Class 12
MATHS
If int (cos4x+1)/(cotx-tanx)dx=Af(x)+B, ...

If `int (cos4x+1)/(cotx-tanx)dx=Af(x)+B,` then

A

`A= -(1)/(8)`

B

`B=(1)/(2)`

C

`f(x)` has fundamental period `(pi)/(2)`

D

`f(x)` is an odd function

Text Solution

Verified by Experts

The correct Answer is:
A, C

`int(cos^(2)2xsin 2x dx)/(cos 2x)=(1)/(2) int sin 4x dx= -(1)/(8)cos 4x+B`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(1+cos4x)/(cotx-tanx)dx

int(1+cos4x)/(cotx-tanx)\ dx

"If " int(cos 4x+1)/(cotx-tanx)dx=Acos4x+B, " then "

If int(cos4x+1)/(cotx-tanx)dx = Acos4x+B ,t h e n (a) A=-1/8 (b) B=1/2 (c) f(x) has fundamental period pi/2 (d) f(x) is an odd function

int(cos4x-1)/(cotx-tanx)dx is equal to

int(cos 4x-1)/(cot x-tanx)dx is equal to

Evaluate: int(1+cos4x)/(cotx-tanx)\ dx

int1/(cos^2x(1-tanx)^2)\ dx

int1/(cos^2x(1-tanx)^2)\ dx

int(cos4x-1)/(cotx-tanx)dx is equal to (A) 1/2ln|sec2x|-1/4cos^2 2x+c (B) 1/2ln|sec2x|+1/4cos^2x+c (C) 1/2ln|cos2x|-1/4cos^2 2x+c (D) 1/2ln|cos2x|+1/4cos^2x+c