Home
Class 12
MATHS
If f(x)=int(x^8+4)/(x^4-2x^2+2)dxa n df(...

If `f(x)=int(x^8+4)/(x^4-2x^2+2)dxa n df(0)=0,t h e n` `f(x)` is an odd function `f(x)` has range `R` `f(x)` has at least one real root `f(x)` is a monotonic function.

A

`f(x)` is an odd function

B

`f(x)` has range R

C

`f(x)` has at least one real root

D

`f(x)` is a monotonic function

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function given by the integral: \[ f(x) = \int \frac{x^8 + 4}{x^4 - 2x^2 + 2} \, dx \] ### Step 1: Simplify the integrand First, we can simplify the expression in the integrand: \[ f(x) = \int \frac{x^8 + 4}{x^4 - 2x^2 + 2} \, dx \] We can rewrite \(x^8 + 4\) as \(x^8 + 4x^4 + 4 - 4x^4\): \[ f(x) = \int \frac{(x^4 + 2)^2 - (2x^2)^2}{x^4 - 2x^2 + 2} \, dx \] ### Step 2: Factor the numerator Now, we can factor the numerator using the difference of squares: \[ f(x) = \int \left( \frac{(x^4 + 2 + 2x^2)(x^4 + 2 - 2x^2)}{x^4 - 2x^2 + 2} \right) \, dx \] ### Step 3: Separate the integral We can separate the integral into two parts: \[ f(x) = \int (x^4 + 2 + 2x^2) \, dx - \int (x^4 + 2 - 2x^2) \, dx \] ### Step 4: Calculate the integrals Now we can compute the integrals: 1. For \( \int (x^4 + 2 + 2x^2) \, dx \): \[ = \frac{x^5}{5} + 2x + \frac{2x^3}{3} + C_1 \] 2. For \( \int (x^4 + 2 - 2x^2) \, dx \): \[ = \frac{x^5}{5} + 2x - \frac{2x^3}{3} + C_2 \] ### Step 5: Combine the results Combining both results, we find: \[ f(x) = \left( \frac{x^5}{5} + 2x + \frac{2x^3}{3} \right) - \left( \frac{x^5}{5} + 2x - \frac{2x^3}{3} \right) + C \] This simplifies to: \[ f(x) = \frac{4x^3}{3} + C \] ### Step 6: Apply the condition \(f(0) = 0\) Given that \(f(0) = 0\): \[ f(0) = \frac{4(0)^3}{3} + C = 0 \implies C = 0 \] Thus, we have: \[ f(x) = \frac{4x^3}{3} \] ### Step 7: Analyze the function 1. **Odd Function**: Since \(f(-x) = -f(x)\), \(f(x)\) is an odd function. 2. **Range**: The function \(f(x) = \frac{4x^3}{3}\) has a range of all real numbers \(R\). 3. **Real Roots**: The equation \(f(x) = 0\) has at least one real root at \(x = 0\). 4. **Monotonic Function**: The derivative \(f'(x) = 4x^2\) is non-negative for all \(x\), indicating that \(f(x)\) is a monotonic function. ### Conclusion Thus, all four statements about \(f(x)\) are true: - \(f(x)\) is an odd function. - \(f(x)\) has range \(R\). - \(f(x)\) has at least one real root. - \(f(x)\) is a monotonic function.

To solve the problem, we need to analyze the function given by the integral: \[ f(x) = \int \frac{x^8 + 4}{x^4 - 2x^2 + 2} \, dx \] ### Step 1: Simplify the integrand First, we can simplify the expression in the integrand: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int(x^8+4)/(x^4-2x^2+2)dx and f(0)=0,t h e n (a) f(x) is an odd function (b) f(x) has range R (c) f(x) has at least one real root (d) f(x) is a monotonic function.

If f(x)=int(3x^2+1)/((x^2-1)^3)dxa n df(0)=0, then the value of |2/(f(2))| is___

If f(x)=int(3x^2+1)/((x^2-1)^3)dxa n df(0)=0, then the value of |2/(f(2))| is___

If f(x) = (x^2 -2x + 4)/(x^2+2x+4), x in R then range of function is

If int(x^2-x+1)/((x^2+1)^(3/2))e^x dx=e^xf(x)+c , then (a) f(x) is an even function (b) f(x) is a bounded function (c) the range of f(x) is (0,1) (d) f(x) has two points of extrema

f(x) satisfies the relation f(x)-lamda int_(0)^(pi//2)sinxcostf(t)dt=sinx If f(x)=2 has the least one real root, then

Ifint(x^4+1)/(x^6+1)dx=tan^(-1)f(x)-2/3tan^(-1)g(x)+C ,t h e n both f(x)a n dg(x) are odd functions f(x) is monotonic function f(x)=g(x) has no real roots int(f(x))/(g(x))dx=-1/x+3/(x^3)+c

Statement I The function f(x) = int_(0)^(x) sqrt(1+t^(2) dt ) is an odd function and STATEMENT 2 : g(x)=f'(x) is an even function , then f(x) is an odd function.

Let f(x)= 3/(x-2)+4/(x-3)+5/(x-4) . Then f(x)=0 has (A) exactly one real root in (2,3) (B) exactly one real root in (3,4) (C) at least one real root in (2,3) (D) none of these

If f(x+y)=f(x)dotf(y) for all real x , ya n df(0)!=0, then prove that the function g(x)=(f(x))/(1+{f(x)}^2) is an even function.