Home
Class 12
MATHS
If int(1-x^(7))/(x(1+x^(7)))dx=alog(e)|x...

If `int(1-x^(7))/(x(1+x^(7)))dx=alog_(e)|x|+blog_(e)|x^(7)+1|+c,` then

A

`a=1`

B

`a= -1`

C

`b=(2)/(7)`

D

`b= -(2)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{1 - x^7}{x(1 + x^7)} \, dx, \] we can start by simplifying the integrand. ### Step 1: Simplify the integrand We can rewrite the integrand as follows: \[ \frac{1 - x^7}{x(1 + x^7)} = \frac{1}{x(1 + x^7)} - \frac{x^7}{x(1 + x^7)} = \frac{1}{x(1 + x^7)} - \frac{x^6}{1 + x^7}. \] So we can express the integral as: \[ \int \left( \frac{1}{x(1 + x^7)} - \frac{x^6}{1 + x^7} \right) \, dx. \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ \int \frac{1}{x(1 + x^7)} \, dx - \int \frac{x^6}{1 + x^7} \, dx. \] ### Step 3: Solve the first integral For the first integral, we can use the substitution \( u = 1 + x^7 \), then \( du = 7x^6 \, dx \) or \( dx = \frac{du}{7x^6} \). We also have \( x^6 = (u - 1)^{6/7} \). Thus, we can rewrite the first integral: \[ \int \frac{1}{x(1 + x^7)} \, dx = \int \frac{1}{x u} \cdot \frac{du}{7x^6} = \frac{1}{7} \int \frac{1}{u} \, du = \frac{1}{7} \ln |u| + C_1 = \frac{1}{7} \ln |1 + x^7| + C_1. \] ### Step 4: Solve the second integral For the second integral, we can use the same substitution \( u = 1 + x^7 \), which gives: \[ \int \frac{x^6}{1 + x^7} \, dx = \int \frac{x^6}{u} \cdot \frac{du}{7x^6} = \frac{1}{7} \int \frac{1}{u} \, du = \frac{1}{7} \ln |u| + C_2 = \frac{1}{7} \ln |1 + x^7| + C_2. \] ### Step 5: Combine the results Now we can combine the results of both integrals: \[ \int \frac{1 - x^7}{x(1 + x^7)} \, dx = \frac{1}{7} \ln |x| - \frac{1}{7} \ln |1 + x^7| + C. \] ### Step 6: Final expression This can be simplified to: \[ \int \frac{1 - x^7}{x(1 + x^7)} \, dx = \frac{1}{7} \ln \left| \frac{x}{1 + x^7} \right| + C. \] ### Conclusion Thus, we have: \[ \int \frac{1 - x^7}{x(1 + x^7)} \, dx = a \ln |x| + b \ln |1 + x^7| + C, \] where \( a = \frac{1}{7} \) and \( b = -\frac{1}{7} \).

To solve the integral \[ \int \frac{1 - x^7}{x(1 + x^7)} \, dx, \] we can start by simplifying the integrand. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(1+x-x^(- 1))e^(x+x^(-1))dx=

int(1+x-x^(- 1))e^(x+x^(- 1))dx=

int(e^x)/((1+e^x)(2+e^x))dx

Evaluate : int(dx)/(x(x^(7)+1))

The value of int(1-x^7)/(x(1+x^7))dx is equal to

(iii) int(e^(x)-1)/(1-e^(-x))dx

int ((1-x)/(1+x^(2)))^(2) e^(x)dx

If int((3x+4))/((x^(3)-2x-4))dx=Alog|x-2|+Blog(f(x))+c , then

int(1)/((7x-2)^(2))dx

If int(xe^(x))/(sqrt(1+e^(x)))dx=f(x)sqrt(1+e^(x))-2logg(x)+C , then