Home
Class 12
MATHS
If int (3sin x+2 cosx)/(3cosx+2sinx)dx=a...

If `int (3sin x+2 cosx)/(3cosx+2sinx)dx=ax+blog_(e)|2 sinx+3 cosx|+c` then a. `a= -(12)/(13)` b. `b=(6)/(13)` c. `a=(12)/(13)` d. `b= -(15)/(39)`

A

`a= -(12)/(13)`

B

`b=(6)/(13)`

C

`a=(12)/(13)`

D

`b= -(15)/(39)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \, dx = ax + b \log |2 \sin x + 3 \cos x| + c, \] we will differentiate both sides and compare coefficients to find the values of \(a\) and \(b\). ### Step 1: Differentiate both sides Differentiating the left-hand side: \[ \frac{d}{dx} \left( \int \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \, dx \right) = \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x}. \] Differentiating the right-hand side: \[ \frac{d}{dx} \left( ax + b \log |2 \sin x + 3 \cos x| + c \right) = a + b \cdot \frac{1}{2 \sin x + 3 \cos x} \cdot (2 \cos x - 3 \sin x). \] ### Step 2: Set the derivatives equal Setting the derivatives equal gives us: \[ \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} = a + b \cdot \frac{2 \cos x - 3 \sin x}{2 \sin x + 3 \cos x}. \] ### Step 3: Cross-multiply to eliminate the fraction Cross-multiplying yields: \[ (3 \sin x + 2 \cos x)(2 \sin x + 3 \cos x) = (3 \cos x + 2 \sin x)(a(2 \sin x + 3 \cos x) + b(2 \cos x - 3 \sin x)). \] ### Step 4: Expand both sides Expanding the left-hand side: \[ 6 \sin^2 x + 9 \sin x \cos x + 4 \cos^2 x. \] Expanding the right-hand side: \[ (3 \cos x + 2 \sin x)(a(2 \sin x + 3 \cos x) + b(2 \cos x - 3 \sin x)). \] ### Step 5: Collect terms and compare coefficients From the expansion, we will collect coefficients of \(\sin x\) and \(\cos x\) and set them equal to the corresponding coefficients from the left-hand side. 1. Coefficient of \(\cos x\): \[ 3a + 2b = 2 \] 2. Coefficient of \(\sin x\): \[ 2a - 3b = 3 \] ### Step 6: Solve the system of equations We have the system of equations: 1. \(3a + 2b = 2\) 2. \(2a - 3b = 3\) Multiply the first equation by 2: \[ 6a + 4b = 4. \] Multiply the second equation by 3: \[ 6a - 9b = 9. \] Subtract the first modified equation from the second: \[ (6a - 9b) - (6a + 4b) = 9 - 4, \] which simplifies to: \[ -13b = 5 \implies b = -\frac{5}{13}. \] ### Step 7: Substitute \(b\) back to find \(a\) Substituting \(b\) into the first equation: \[ 3a + 2\left(-\frac{5}{13}\right) = 2, \] which simplifies to: \[ 3a - \frac{10}{13} = 2 \implies 3a = 2 + \frac{10}{13} = \frac{26}{13} + \frac{10}{13} = \frac{36}{13}. \] Thus, \[ a = \frac{12}{13}. \] ### Final Results The values are: - \(a = \frac{12}{13}\) - \(b = -\frac{5}{13}\) ### Conclusion The correct options are: - \(a = \frac{12}{13}\) (Option C) - \(b = -\frac{5}{13}\)

To solve the integral \[ \int \frac{3 \sin x + 2 \cos x}{3 \cos x + 2 \sin x} \, dx = ax + b \log |2 \sin x + 3 \cos x| + c, \] we will differentiate both sides and compare coefficients to find the values of \(a\) and \(b\). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Single Correct Answer Type)|77 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(3sinx+2cosx)/(3cosx+2sinx)dx

If int (3sinx+2cosx)/ (3cosx+2sinx) dx=a x+b ln|2sinx+3cosx|+C , then (a) a=-(12)/(13),b=(15)/(39) (b) a=-7/(13),b=6/(13) (c) a=(12)/(13),b=(15)/(39) (d) a=-7/(13),b=-6/(13)

int (sinx+cosx)/sqrt(1+sin2x)dx .

Evaluate : int(sinx-cosx)/(3+2sin2x)dx .

int(dx)/((sinx-2cosx)(2sinx+cosx))

Evaluate: int(sinx+2cosx)/(2sinx+cosx)dx

int(sinx+cosx)/(sqrt(1+sin2x))dx

int(sin2x)/((sinx+cosx)^2)dx

Evaluate: int(5cosx+6)/(2cosx+sinx+3)dx

Evaluate: int(5cosx+6)/(2cosx+sinx+3)dx