Home
Class 12
MATHS
If A is a square matrix and e^a is defin...

If A is a square matrix and `e^a` is defined as `e^A=1+A^2/(2!)+A^3/(3!)...........oo=1/2[f(x) ,g(x) and g(x) ,f(x)],` where `A=[(x,x),(x,x)].` and I being the identity matrix then `int (g(x))/(f(x))dx=`

A

`(e^(x))/(2)(sinx-cosx)`

B

`(e^(2x))/(5)(2sinx-cosx)`

C

`(e^(x))/(5)(sin2x-cos2x)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the integral of \( \frac{g(x)}{f(x)} \, dx \) where \( A = \begin{pmatrix} x & x \\ x & x \end{pmatrix} \) and \( e^A \) is defined as: \[ e^A = I + \frac{A^2}{2!} + \frac{A^3}{3!} + \ldots \] ### Step 1: Calculate \( A^2 \) First, we calculate \( A^2 \): \[ A^2 = A \cdot A = \begin{pmatrix} x & x \\ x & x \end{pmatrix} \cdot \begin{pmatrix} x & x \\ x & x \end{pmatrix} \] Calculating the product: \[ A^2 = \begin{pmatrix} x^2 + x^2 & x^2 + x^2 \\ x^2 + x^2 & x^2 + x^2 \end{pmatrix} = \begin{pmatrix} 2x^2 & 2x^2 \\ 2x^2 & 2x^2 \end{pmatrix} \] ### Step 2: Calculate \( A^3 \) Next, we calculate \( A^3 \): \[ A^3 = A^2 \cdot A = \begin{pmatrix} 2x^2 & 2x^2 \\ 2x^2 & 2x^2 \end{pmatrix} \cdot \begin{pmatrix} x & x \\ x & x \end{pmatrix} \] Calculating the product: \[ A^3 = \begin{pmatrix} 2x^2 \cdot x + 2x^2 \cdot x & 2x^2 \cdot x + 2x^2 \cdot x \\ 2x^2 \cdot x + 2x^2 \cdot x & 2x^2 \cdot x + 2x^2 \cdot x \end{pmatrix} = \begin{pmatrix} 4x^3 & 4x^3 \\ 4x^3 & 4x^3 \end{pmatrix} \] ### Step 3: General Form of \( A^n \) From the pattern, we can see that: \[ A^n = \begin{pmatrix} 2^{n-1} x^n & 2^{n-1} x^n \\ 2^{n-1} x^n & 2^{n-1} x^n \end{pmatrix} \] ### Step 4: Compute \( e^A \) Now we can compute \( e^A \): \[ e^A = I + \sum_{n=1}^{\infty} \frac{A^n}{n!} = I + \sum_{n=1}^{\infty} \frac{1}{n!} \begin{pmatrix} 2^{n-1} x^n & 2^{n-1} x^n \\ 2^{n-1} x^n & 2^{n-1} x^n \end{pmatrix} \] This leads to: \[ e^A = \begin{pmatrix} 1 + \sum_{n=1}^{\infty} \frac{2^{n-1} x^n}{n!} & \sum_{n=1}^{\infty} \frac{2^{n-1} x^n}{n!} \\ \sum_{n=1}^{\infty} \frac{2^{n-1} x^n}{n!} & 1 + \sum_{n=1}^{\infty} \frac{2^{n-1} x^n}{n!} \end{pmatrix} \] ### Step 5: Identify \( f(x) \) and \( g(x) \) From the matrix, we can identify: \[ f(x) = 1 + e^{2x} - 1 = e^{2x} \] \[ g(x) = e^{2x} - 1 \] ### Step 6: Calculate \( \int \frac{g(x)}{f(x)} \, dx \) Now we need to compute: \[ \int \frac{g(x)}{f(x)} \, dx = \int \frac{e^{2x} - 1}{e^{2x}} \, dx = \int \left( 1 - \frac{1}{e^{2x}} \right) \, dx \] This can be separated into two integrals: \[ \int 1 \, dx - \int e^{-2x} \, dx \] Calculating these integrals: \[ = x - \left(-\frac{1}{2} e^{-2x}\right) + C = x + \frac{1}{2} e^{-2x} + C \] ### Final Answer Thus, the final answer for the integral is: \[ \int \frac{g(x)}{f(x)} \, dx = x + \frac{1}{2} e^{-2x} + C \]

To solve the given problem, we need to find the integral of \( \frac{g(x)}{f(x)} \, dx \) where \( A = \begin{pmatrix} x & x \\ x & x \end{pmatrix} \) and \( e^A \) is defined as: \[ e^A = I + \frac{A^2}{2!} + \frac{A^3}{3!} + \ldots \] ### Step 1: Calculate \( A^2 \) ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Numerical Value Type)|10 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If f(x)=e^(x) and g(x)=(x)/(2) , then g(f(2))=

If f(x)=2 In x+3 and g(x)= e^(x) , then f(g)(3))=

If f(x)=e^(x) and g(x)=f(x)+f^(-1) , what does g(2) equal?

Let f(x)=(e^(x))/(1+x^(2)) and g(x)=f'(x) , then

If f(x)=log_(e)x and g(x)=e^(x) , then prove that : f(g(x)}=g{f(x)}

If f(x)=sqrt(2x+3) and g(x)=x^(2)+1 , then f(g(2))=

If g(x)=3x-1 and f(x)=4g(x)+3 . What is f(2)?

f(x)=x^(2)+xg'(1)+g''(2)and g(x)=f(1)x^(2)+xf'(x)+f'(x). The domain of the function sqrt((f(x))/(g(x))) is

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Exercises (Linked Comprehension Type)
  1. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  2. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  3. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  4. If A is square matrix and e^(A) is defined as e^(A)=I+A+(A^(2))/(2!...

    Text Solution

    |

  5. If A is a square matrix and e^a is defined as e^A=1+A^2/(2!)+A^3/(3!)....

    Text Solution

    |

  6. If A is square matrix and e^(A) is defined as e^(A)=I+A+(A^(2))/(2!...

    Text Solution

    |

  7. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  8. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  9. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  10. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  11. Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

    Text Solution

    |

  12. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  13. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  14. If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2)...

    Text Solution

    |

  15. If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2)...

    Text Solution

    |

  16. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |

  17. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |