Home
Class 12
MATHS
If A is square matrix and e^(A) is defin...

If A is square matrix and `e^(A)` is defined as
`e^(A)=I+A+(A^(2))/(2!)+(A^(3))/(3!)+...=(1)/(2){:[(f(x),g(x)),(g(x),f(x))]:},` where
`A={:[(x,x),(x,x)]:} and 0 lt x lt 1,I` is an identity matrix.
`int (g(x)+1)sinxdx` is equal to

A

`(1)/(2sqrt(e^(x)-1))-"cosec"^(-1)(e^(x))+c`

B

`(2)/(sqrt(e^(x)-e^(-x)))-"sec"^(-1)(e^(x))+c`

C

`(1)/(2sqrt(e^(2x)-1))+"sec"^(-1)(e^(x))+c`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
C

`A=[(x,x),(x,x)]`
`impliesA^(2)=[(2x^(2),2x^(2)),(2x^(2),2x^(2))],A^(3)=[(2^(2)x^(3),2^(2)x^(3)),(2^(2)x^(3),2^(2)x^(3))]` and so on
Then `e^(A)=I+A+(A^(2))/(2!)+(A^(3))/(3!)+ … +`
`=[(1+x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+ ... ,x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+ ...),(x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+ ..., 1+x+(2x^(2))/(2!)+(2^(2)x^(3))/(3!)+ ...)]`
`=[((1)/(2)(1+2x+(2^(2)x^(2))/(2!)+(2^(3)x^(3))/(3!)+ ...)+(1)/(2) ,(1)/(2)(1+2x+(2^(2)x^(2))/(2!)+ ...)-(1)/(2)),((1)/(2)(1+2x+(2^(2)x^(2))/(2!)+(2^(3)x^(3))/(3!)+ ...)-(1)/(2) ,(1)/(2)(1+2x+(2^(2)x^(2))/(2!)+ ...)+(1)/(2))]`
`=(1)/(2)[(e^(2x)+1,e^(2x)-1),(e^(2x)-1,e^(2x)+1)]`
` :. f(x)=e^(2x)+1 and g(x)=e^(2x)-1`
`int(e^(2x)+1)/(sqrt(e^(2x)-1))dx=int(e^(2x))/(sqrt(e^(2x)-1))dx+(1)/(sqrt(e^(2x)-1))dx`
`=int(e^(2x))/(sqrt(e^(2x)-1))dx+int (e^(x))/(e^(x) sqrt(e^(2x)-1))dx`
`=(1)/(2sqrt(e^(2x)-1))+sec^(-1)(e^(x))+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Numerical Value Type)|10 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If A is a square matrix and e^a is defined as e^A=1+A^2/(2!)+A^3/(3!)...........oo=1/2[f(x) ,g(x) and g(x) ,f(x)], where A=[(x,x),(x,x)]. and I being the identity matrix then int (g(x))/(f(x))dx=

If f(x) = 3x + 1 and g(x) = x^(2) - 1 , then (f + g) (x) is equal to

If g(x)=1+sqrtx and f(g(x))=3+2sqrtx+x then f(x) is equal to

If f(x)=e^(x)g(x),g(0)=2,g'(0)=1, then f'(0) is

If the functions of f and g are defined by f(x)=3x-4 and g(x)=2+3x then g^(-1)(f^(-1)(5))

If int(dx)/(x+x^(2011))=f(x)+C_(1) and int(x^(2009))/(1+x^(2010))dx=g(x)+C_(2) (where C_(1) and C_(2) are constants of integration). Let h(x)=f(x)+g(x). If h(1)=0 then h(e) is equal to :

If f:RtoR is defined by f(x)=3x^(2)-5 and g:RtoR is defined by g(x)=(x)/(x^(2)+1) then (gof)(x) is

If I=int(x^(3)-1)/(x^(5)+x^(4)+x+1)dx=(1)/(4)ln(f(x))-ln(g(x))+c (where, c is the constant of integration) and f(0)=g(0)=1 ,then the value of f(1).g(1) is equal to

If f(x)={(1-|x| ,, |x|lt=1),(0 ,, |x|>1):} and g(x)=f(x-1)+f(x+1), then find the value of int_(-3)^5g(x)dx .

If f(x) = x^(2) and g(x) = (1)/(x^(3)) . Then the value of (f(x)+g(x))/(f(-x)-g(-x)) at x = 2 is

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Exercises (Linked Comprehension Type)
  1. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  2. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  3. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  4. If A is square matrix and e^(A) is defined as e^(A)=I+A+(A^(2))/(2!...

    Text Solution

    |

  5. If A is a square matrix and e^a is defined as e^A=1+A^2/(2!)+A^3/(3!)....

    Text Solution

    |

  6. If A is square matrix and e^(A) is defined as e^(A)=I+A+(A^(2))/(2!...

    Text Solution

    |

  7. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  8. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  9. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  10. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  11. Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

    Text Solution

    |

  12. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  13. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  14. If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2)...

    Text Solution

    |

  15. If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2)...

    Text Solution

    |

  16. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |

  17. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |