Home
Class 12
MATHS
Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2))...

Let `f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx` and `f(0)=0` then `f(1)` is

A

an increasing function

B

a decreasing function

C

a non-monotonic function

D

can't say anything

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral given by the function \( f(x) = \int \frac{x^2}{(1+x^2)(1+\sqrt{1+x^2})} \, dx \) and find \( f(1) \) given that \( f(0) = 0 \). ### Step-by-Step Solution: 1. **Set up the integral**: \[ f(x) = \int \frac{x^2}{(1+x^2)(1+\sqrt{1+x^2})} \, dx \] 2. **Substitute \( x = \tan \theta \)**: Using the substitution \( x = \tan \theta \), we have \( dx = \sec^2 \theta \, d\theta \) and \( 1 + x^2 = \sec^2 \theta \). Thus, we can rewrite the integral: \[ f(x) = \int \frac{\tan^2 \theta}{\sec^2 \theta (1+\sqrt{\sec^2 \theta})} \sec^2 \theta \, d\theta \] Simplifying gives: \[ f(x) = \int \frac{\tan^2 \theta}{1+\sqrt{\sec^2 \theta}} \, d\theta \] 3. **Simplify the denominator**: Note that \( \sqrt{\sec^2 \theta} = \sec \theta \), so: \[ f(x) = \int \frac{\tan^2 \theta}{1+\sec \theta} \, d\theta \] 4. **Rewrite \( \tan^2 \theta \)**: Using the identity \( \tan^2 \theta = \sec^2 \theta - 1 \): \[ f(x) = \int \frac{\sec^2 \theta - 1}{1+\sec \theta} \, d\theta \] 5. **Split the integral**: This can be split into two separate integrals: \[ f(x) = \int \frac{\sec^2 \theta}{1+\sec \theta} \, d\theta - \int \frac{1}{1+\sec \theta} \, d\theta \] 6. **Evaluate the first integral**: The first integral can be evaluated using the substitution \( u = 1 + \sec \theta \), leading to: \[ \int \frac{\sec^2 \theta}{1+\sec \theta} \, d\theta = \ln |1 + \sec \theta| + C \] 7. **Evaluate the second integral**: The second integral can be evaluated similarly: \[ \int \frac{1}{1+\sec \theta} \, d\theta = \ln |1 + \sec \theta| - \theta + C \] 8. **Combine results**: Combining these results gives: \[ f(x) = \ln |1 + \sec \theta| - \left( \ln |1 + \sec \theta| - \theta \right) + C \] Simplifying leads to: \[ f(x) = -\theta + C \] 9. **Back-substitute for \( \theta \)**: Since \( \theta = \tan^{-1}(x) \): \[ f(x) = -\tan^{-1}(x) + C \] 10. **Use the condition \( f(0) = 0 \)**: Plugging in \( x = 0 \): \[ f(0) = -\tan^{-1}(0) + C = 0 \implies C = 0 \] Thus, we have: \[ f(x) = -\tan^{-1}(x) \] 11. **Find \( f(1) \)**: Now, we calculate \( f(1) \): \[ f(1) = -\tan^{-1}(1) = -\frac{\pi}{4} \] ### Final Answer: \[ f(1) = -\frac{\pi}{4} \]

To solve the problem, we need to evaluate the integral given by the function \( f(x) = \int \frac{x^2}{(1+x^2)(1+\sqrt{1+x^2})} \, dx \) and find \( f(1) \) given that \( f(0) = 0 \). ### Step-by-Step Solution: 1. **Set up the integral**: \[ f(x) = \int \frac{x^2}{(1+x^2)(1+\sqrt{1+x^2})} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Numerical Value Type)|10 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=int(x^2dx)/((1+x^2)(1+sqrt(x^2+1)))a n df(0)=0. Then value of f(1) will be

If f(x)=int 2-(1)/(1+x^(2))-(1)/(sqrt(1+x^(2)))dx , then f is

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

If f(x)=int(x^(2)+sin^(2)x)/(1+x^(2))sec^(2)xdx and f(0)=0, then f(1)=

f(x) = int(x^(2)+x+1)/(x+1+sqrt(x))dx , then f(1) =

Let f(x)=int(dx)/((x^(2)+1)(x^(2)+9)) and f(0)=0 if f(sqrt(3)) =(5)/(36)k, then k is

If f(x)=int(2+sqrt(x))/((x+1+sqrt(x))^2)dx and f(0)=0 then the value of If [f(4)] is: (where [.] represents the greatest integer function) .

If f'(x)=(dx)/((1+x^(2))^(3//2)) and f(0)=0. then f(1) is equal to

If f(x)=int(3x^4-1)/(x^4+x+1)^2dx and f(0)=0 , then f(-1)= …

Let f(x)=2x+1 and g(x)=int(f(x))/(x^(2)(x+1)^(2))dx . If 6g(2)+1=0 then g(-(1)/(2)) is equal to

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Exercises (Linked Comprehension Type)
  1. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  2. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  3. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  4. If A is square matrix and e^(A) is defined as e^(A)=I+A+(A^(2))/(2!...

    Text Solution

    |

  5. If A is a square matrix and e^a is defined as e^A=1+A^2/(2!)+A^3/(3!)....

    Text Solution

    |

  6. If A is square matrix and e^(A) is defined as e^(A)=I+A+(A^(2))/(2!...

    Text Solution

    |

  7. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  8. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  9. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  10. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  11. Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

    Text Solution

    |

  12. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  13. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  14. If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2)...

    Text Solution

    |

  15. If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2)...

    Text Solution

    |

  16. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |

  17. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |