Home
Class 12
MATHS
If a function satisfies the relation f(x...

If a function satisfies the relation `f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1,` then
The value of `lim_(x to -oo) f(x)` is

A

`(1)/(sqrt(e ))`

B

`(1)/(e )`

C

`sqrt(e )`

D

e

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given relation: \[ f(x) f''(x) - f(x) f'(x) = (f'(x))^2 \] We also know that: \[ f(0) = 1 \quad \text{and} \quad f'(0) = 1 \] ### Step 1: Rearranging the given equation We can rearrange the given equation as follows: \[ f''(x) - \frac{f'(x)}{f(x)} f'(x) = \frac{(f'(x))^2}{f(x)} \] This simplifies to: \[ f''(x) - f'(x) = \frac{(f'(x))^2}{f(x)} \] ### Step 2: Separating variables We can separate the variables by rewriting the equation: \[ \frac{f''(x)}{f'(x)} - 1 = \frac{f'(x)}{f(x)} \] ### Step 3: Integrating both sides Now, we integrate both sides with respect to \(x\): \[ \int \left( \frac{f''(x)}{f'(x)} - 1 \right) dx = \int \frac{f'(x)}{f(x)} dx \] The left side becomes: \[ \ln |f'(x)| - x \] And the right side becomes: \[ \ln |f(x)| \] Thus, we have: \[ \ln |f'(x)| - x = \ln |f(x)| + C \] ### Step 4: Exponentiating both sides Exponentiating both sides gives us: \[ \frac{|f'(x)|}{|f(x)|} = e^{x + C} \] We can rewrite this as: \[ |f'(x)| = K |f(x)| e^x \] where \(K = e^C\). ### Step 5: Solving the differential equation Now we have a separable differential equation: \[ \frac{f'(x)}{f(x)} = K e^x \] Integrating both sides gives us: \[ \ln |f(x)| = K e^x + C_1 \] Exponentiating again leads to: \[ f(x) = A e^{K e^x} \] where \(A = e^{C_1}\). ### Step 6: Applying initial conditions Using the initial condition \(f(0) = 1\): \[ f(0) = A e^{K} = 1 \implies A = e^{-K} \] Thus, we have: \[ f(x) = e^{-K} e^{K e^x} = e^{K(e^x - 1)} \] ### Step 7: Finding the limit as \(x \to -\infty\) Now, we need to find: \[ \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} e^{K(e^x - 1)} \] As \(x \to -\infty\), \(e^x \to 0\), so: \[ K(e^x - 1) \to K(0 - 1) = -K \] Thus: \[ f(x) \to e^{-K} \] ### Conclusion Since \(K\) is a constant, we can conclude that: \[ \lim_{x \to -\infty} f(x) = e^{-K} \] Given the initial conditions, we find that \(K = 1\), so: \[ \lim_{x \to -\infty} f(x) = e^{-1} = \frac{1}{e} \] ### Final Answer: \[ \lim_{x \to -\infty} f(x) = \frac{1}{e} \]

To solve the problem, we start with the given relation: \[ f(x) f''(x) - f(x) f'(x) = (f'(x))^2 \] We also know that: \[ f(0) = 1 \quad \text{and} \quad f'(0) = 1 \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Matrix Match Type)|4 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise EXERCISES (Numerical Value Type)|10 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then Number of roots of the equation f(x)=e^(x) is

If a function 'f' satisfies the relation f(x)f^('')(x)-f(x)f^(')(x) -f^(')(x)^(2)=0 AA x in R and f(0)=1=f^(')(0) . Then find f(x) .

If the function / satisfies the relation f(x+y)+f(x-y)=2f(x),f(y)AAx , y in R and f(0)!=0 , then

A function f(x) satisfies the relation f(x+y) = f(x) + f(y) + xy(x+y), AA x, y in R . If f'(0) = - 1, then

The function f(x) satisfying the equation f^2 (x) + 4 f'(x) f(x) + (f'(x))^2 = 0

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x) for all x ,and f(0)=3, and if f(3)=3, then the value of f(-3) is ______________

If function f satisfies the relation f(x)*f^(prime)(-x)=f(-x)*f^(prime)(x)for a l lx ,a n df(0)=3,a n dif f(3)=3, then the value of f(-3) is ______________

The function f (x) satisfy the equation f (1-x)+ 2f (x) =3x AA x in R, then f (0)=

A function f : R→R satisfies the equation f(x)f(y) - f(xy) = x + y ∀ x, y ∈ R and f (1)>0 , then

If a real valued function f(x) satisfies the equation f(x +y)=f(x)+f (y) for all x,y in R then f(x) is

CENGAGE ENGLISH-INDEFINITE INTEGRATION-Exercises (Linked Comprehension Type)
  1. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  2. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  3. y= f(x) is a polynomial function passing through point (0, 1) and whic...

    Text Solution

    |

  4. If A is square matrix and e^(A) is defined as e^(A)=I+A+(A^(2))/(2!...

    Text Solution

    |

  5. If A is a square matrix and e^a is defined as e^A=1+A^2/(2!)+A^3/(3!)....

    Text Solution

    |

  6. If A is square matrix and e^(A) is defined as e^(A)=I+A+(A^(2))/(2!...

    Text Solution

    |

  7. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  8. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  9. Euler's substitution: Integrals of the form intR(x, sqrt(ax^(2)+bx+...

    Text Solution

    |

  10. Let f(x)=int(x^(2)dx)/((1+x^(2))(1+sqrt(1+x^(2))))and f(0)=0. f(x) i...

    Text Solution

    |

  11. Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

    Text Solution

    |

  12. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  13. If int(x(x-1))/((x^(2)+1)(x+1)sqrt(x^(3)+x^(2)+x))dx =(1)/(2)log(e)...

    Text Solution

    |

  14. If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2)...

    Text Solution

    |

  15. If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2)...

    Text Solution

    |

  16. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |

  17. Consider two differentiable functions f(x),g(x) satisfying 6intf(x)...

    Text Solution

    |