Home
Class 12
MATHS
Let O be the circumcentre and H be the o...

Let O be the circumcentre and H be the orthocentre of an acute angled triangle ABC. If `A gt B gt C`, then show that `Ar (Delta BOH) = Ar (Delta AOH) + Ar (Delta COH)`

Text Solution

Verified by Experts


From the figure, we have
`angle OAH = A - 2(90^(@) - B) = B - C`
Similarly, `angle OBH = A - C`
and `angle OCH = A - B`
Also, `AH = 2R cos A, BH = 2R cos B, CH = 2R cos C`
`Ar (Delta AOH) = (1)/(2) (R) (2R cos A) sin (B - C)`
`= R^(2) cos (B + C) sin (C - B)`
`=(R^(2))/(2) (sin 2 C - sin 2B)`
Similarly, `Ar(DeltaBOH) = (R^(2))/(2) (sin 2C - sin 2A)`
and `Ar (Delta COH) = (R^(2))/(2) (sin 2 B - sin 2A)`
Clearly, `AR (Delta AOH) + Ar (Delta COH) = Ar (Delta BOH)`
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Illustration|86 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.1|12 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In an acute-angled triangle ABC, tanA+tanB+tanC

D is a point in side BC of triangle ABC. If AD gt AC , show that AB gt AC .

Let ABC be a triangle and O be its orthocentre .If R and R_(1) are the circum-radii of triangle ABC and AOB , then

In an acute-angled triangle ABC, tanA+tanB+tanC=tanAtanBtanC , then tanAtanBtanC =

If O is the circumcentre and P the orthocentre of Delta ABC , prove that vec(OA)+ vec(OB) + vec(OC) =vec(OP) .

In a triangle, if r_(1) gt r_(2) gt r_(3), then show a gtb gt c.

If H is the orthocentre of triangle ABC, R = circumradius and P = AH + BH + CH , then

Let H be the orthocentre of triangle ABC. Then angle subtended by side BC at the centre of incircle of Delta CHB is

The circumcentre of the triangle ABC is O . Prove that angle OBC+angle BAC=90^@ .

If O is the circumcentre, G is the centroid and O' is orthocentre or triangle ABC then prove that: vec(OA) +vec(OB)+vec(OC)=vec(OO')