Home
Class 12
MATHS
Prove that b^(2) cos 2 A - a^(2) cos 2B ...

Prove that `b^(2) cos 2 A - a^(2) cos 2B = b^(2) -a^(2)`

Text Solution

AI Generated Solution

To prove the equation \( b^2 \cos 2A - a^2 \cos 2B = b^2 - a^2 \), we will follow these steps: ### Step 1: Use the double angle identities for cosine We know that: \[ \cos 2A = 1 - 2\sin^2 A \quad \text{and} \quad \cos 2B = 1 - 2\sin^2 B \] Substituting these identities into the equation gives: ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.2|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.3|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Illustration|86 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

Prove that a(b^(2) + c^(2)) cos A + b(c^(2) + a^(2)) cos B + c(a^(2) + b^(2)) cos C = 3abc

In any DeltaABC , prove that : (b^2 - c^2) cos 2A + (c^2 - a^2) cos 2B + (a^2 - b^2) cos 2C =0

Prove that : cot^(2) A - cot^(2) B = (cos^(2) A - cos^(2) B)/ (sin^(2) A sin^(2) B) = cosec^(2) A - cosec^(2)B

In any DeltaABC , prove that (cos2A)/a^(2)-(cos2B)/b^(2)=1/a^(2)-1/b^(2)

Prove that (cos A - cos B) ^(2) + (sin A - sin B ) ^(2) = 4 sin ^(2) ((A -B)/( 2 )).

Prove that (cos^(2)A-sin^(2)B)+1-cos^(2)C

Prove that (cos A + cos B ) ^(2) +(sin A + sin B) ^(2) = 4 cos ^(2) ((A -B)/(2)).

In a triangle ABC, prove that (a) cos(A + B) + cos C = 0 (b) tan( (A+B)/2)= cot(C/ 2)

In any DeltaABC , prove that : (b^2 - c^2)/(cos B + cos C) + (c^2 - a^2)/(cos C + cos A) + (a^2 - b^2)/(cos A + cos B) = 0

If A+B+C=180^0 , prove that : cos^2 (A/2) + cos^2 (B/2) - cos^2 (C/2) = 2cos (A/2) cos (B/2) sin (C/2)